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Abstract 
 

This study investigated the minimum requirements to establish a satellite tracking 

system architecture for a hostile “parasitic microsatellite” to rendezvous with a larger, 

non-cooperative target satellite.  Four types of tracking systems and their capabilities 

were reviewed with emphasis on “low-technology” level and/or mobile systems which 

could be used by technologically unsophisticated state or non-state adversaries.  With the 

tracking system architecture selected, simulated tracking data was processed with a non-

linear least squares orbit determination filter to determine and/or update the target 

satellite’s state vector. 
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ORBIT DETERMINATION FOR A MICROSATELLITE 
 

RENDEZVOUS WITH A NON-COOPERATIVE TARGET 
 
 
 
 

I.  Introduction 
 
1.1  Background Information 
 
 Since the end of the 1991 Persian Gulf War, which has been called the ‘first space 

war,’ the United States has become increasingly dependent on products and services 

derived from space borne assets, both economically and militarily.  In view of this 

increased dependency, the 2000 Commission to Assess United States National Security 

Space Management and Organization recognized in their January 11, 2001 report “The 

political, economic, and military value of space systems makes them attractive targets for 

state and non-state actors hostile to the United States and its interests.” (Space 

Commission, 12)  China is one such potentially hostile state actor.  According to a report 

in the Hong Kong Sing Tao newspaper dated January 5, 2001, “The Small Satellite 

Institute under the Research Institute of Space Technology has developed an advanced 

anti-satellite weapon called ‘parasitic satellite’.” (Tung)  The article further reports 

 “the ‘parasitic satellite’ is a microsatellite which can be launched to stick to an 
 enemy satellite; and in time of war, it will jam or destroy the enemy satellite 
 according to the command it receives.  As a new-concept anti-satellite weapon, 
 ‘parasitic satellite’ can control or attack many types of satellite, including low- 
 orbit, medium-orbit and high-orbit satellites, both military and civilian satellites, 
 single satellite, and constellated satellites.  An enemy satellite, once locked on by 
 ‘parasitic satellite,’ cannot escape being paralyzed or destroyed instantaneously in 
 time of war, no matter how sophisticated it is, and no matter whether it is a  
      communications satellite, radar electronics jamming satellite, or even a space 
 station or space-based laser gun.” (Tung) 
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In the concluding paragraph, the article states “Its [Beijing’s] long-term strategic 

objective is to establish a strategic balance among big powers, break the space monopoly 

by the superpower’s huge astronautical system, and weaken the superpower’s 

information warfare capability.” (Tung) 

 While the parasitic satellite report may itself be an example of information 

warfare whereby an adversary attempts to misinform or deceive potential adversaries, a 

more substantive report appearing on the SPACE.com website on October 19, 2000 

details Tsinghua-1, China’s first microsatellite.  According to the report, Tsinghua-1 was 

a joint project of Tsinghua University in Beijing and Surrey Satellite Technology Ltd. 

(SSTL) of Guildford, United Kingdom.  Tsinghua-1 was one of three small satellites 

launched by a Kosmos 3M booster on June 28, 2000.  A key paragraph of this article 

states 

  “While the intent of the microsat project is purely scientific in nature, its 
  capabilities have not been lost on military experts…And the satellite also 
  has demonstrated the ability to maneuver and station-keep with neighbor- 
  ing spacecraft…” (Seitzen) 
 

This ability of small satellites to carry out automated space rendezvous and 

observation of other satellites was demonstrated shortly after launch when the 6.5-kg 

British SNAP-1 nano-satellite, also built by SSTL and launched with Tsinghua-1, made 

the first-ever space rendezvous of microsats, closing to a range of just 30 feet (9 meters) 

(Seitzen).  It should be noted that any potentially hostile satellite rendezvous missions 

will not be so easily set up for success.  In this case, the three small satellites were all 

deployed by the same booster into roughly the same orbital conditions and were no more 

than a few hundred meters apart when the rendezvous was performed.   For the case of a 
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hostile microsatellite mission, the aggressor will have to first determine which of the 

satellites already on orbit, whether for days or years, is to be targeted then launch the 

microsatellite to intercept the target.  Since by its very nature (i.e. micro-sized), the 

microsatellite will not possess an extensive propulsion system or on-board propellant 

supply, it is critical the microsatellite be directly launched as closely as possible into the 

target satellite’s orbital plane.  Out-of-plane, or inclination changing, maneuvers are 

extremely costly in terms of propellant for any satellite, regardless of size.  In-plane 

maneuvers, on the other hand, are relatively inexpensive in terms of propellant. 

Another potentially threatening implication for United States’ space systems is the 

possibility that “Small, microsat satellites used in future reconnaissance roles could be 

quickly built and launched aboard Chinese space boosters in a “pop-up” capability as 

needed for military assignments.”  (Seitzen)  Although, first mentioned in the October 19, 

2000 article above, further reference to a launch-on-demand system was publicly made at 

a space symposium held in Shanghai on 17-20 April 2001.  According to the article 

“China Plans Rapid-Response, Mobile Rocket, Nanosatellite Next Year,” which appeared 

on the SpaceDaily website on May 1, 2001, Chinese speakers discussed “the need for 

300-500 kilogram-class satellites to be put in orbit within hours upon request from a 

customer…along with scientific, economic, and national security needs.”  To meet this 

requirement, the Chinese engineers and scientists envision a mobile, truck-based platform 

that would be capable of launching from “anywhere in the country.”  The article further 

quoted Yin Xingliang, vice president of a Chinese company called CAMEC, regarding 

the mobile launch system, “the tracking, telemetry, and command (TT&C) method and 

the TT&C system must conform to features of mobile launch.” (Cosyn) 



  

   4

For this thesis, the initial conditions to be tested for rendezvous placed the 

microsatellite in the same orbit as the target but trailing the target by 1,000 km.  The first 

rendezvous maneuver control thrust calculations will be based on orbit positions 

determined by ground sensors.  When the microsatellite is within range of the target to 

track it with its on-board sensor, then the control thrust calculations will be based on orbit 

positions based on those observations. 

 

1.2  Problem Description/Objectives 

  The fundamental issue to be investigated regarding the Chinese “parasitic 

satellite” was the overall feasibility of such a system.  To that end, the work related to 

this topic was divided among three students in the Air Force Institute of Technology 

Department of Aeronautics and Astronautics (AFIT/ENY) 03M class.  The areas of 

responsibility included selecting a tracking and orbit determination architecture for both 

the hostile microsatellite and the larger target satellite; establishing a rendezvous control 

algorithm; and modeling the larger target satellite’s dynamics for detection of a covert 

microsatellite docking. 

 The objective of this thesis was to develop a tracking system architecture concept 

and a set of orbit determination routines for three different tracking phases for both the 

microsatellite and the target satellite.  These phases include: 1) initial orbit determination 

such as following the launch of the microsatellite at the beginning of its rendezvous 

mission or the activation of a new tracking sensor that has no a priori knowledge of the 

target’s state (orbital elements); 2) orbit determination (orbital element update) from 

ground sensor data using an initial estimate of the target’s state to start the orbit 
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determination filter; and finally, 3) determination of the target satellite’s orbit from the 

perspective of the microsatellite’s space-borne sensor using an initial estimate of the 

target’s state based on the orbit determination from the ground sensor(s) to start the on-

orbit determination filter. 

 The initial orbit determination phase utilizes methods developed by Gibbs and 

Herrick (Vallado: 414, 420).  The Gibbs Method uses three sequential, non-zero, coplanar 

position vectors to determine the velocity associated with the second (middle) position 

vector.  Thus, having the three components for position vector and the three components 

for the velocity vector give the six total quantities needed to define the satellite’s state.  

Vallado (1998) offers two warnings when implementing the Gibbs Method.  First, 

although the problem formulation assumes the vectors are coplanar, real world data may 

produce position vectors that are slightly out of plane.  Therefore, the user must choose 

an error tolerance level when checking whether the vectors are coplanar.  Vallado 

suggests a tolerance of 2o to 3o (Vallado, 410).  Second, even if the position vectors are 

coplanar, the Gibbs Method will suffer numerical instability if they are too closely spaced 

together along the orbital path.  Vallado states the Gibbs Method is robust and works with 

angles separated by as little as 1o, but degrades quickly with smaller angles (Vallado, 

413). 

 The Herrick-Gibbs Method (Vallado, 420) is a variation of the basic Gibbs 

Method which uses a Taylor-series approximation to obtain the velocity vector associated 

with the second of three sequential position vectors.  Whereas the Gibbs Method becomes 

unstable when the three position vectors are closely spaced in-plane, the Herrick-Gibbs 

Method is better suited for such conditions.  Regarding the suitability of the Gibbs versus 
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Herrick-Gibbs methods, Vallado says Herrick-Gibbs is superior below angular 

separations of 1o while Gibbs is superior with angular separations over 5o (Vallado, 421). 

 The second orbit determination phase is the updating of the target satellite’s 

orbital elements using observations from a ground-based sensor and implementing a non-

linear least squares orbit determination filter.  The non-linear least squares filter was 

modeled after FORTRAN code developed by Dr. William Wiesel for use in his class 

MECH 731 Modern Methods of Orbit Determination at the Air Force Institute of 

Technology.  His original FORTRAN code was set up for orbit determination of a 

spacecraft on an interplanetary trajectory to rendezvous with Mars and included 

perturbation modeling for the third-body gravitational effects of the sun and the moon.  

The FORTRAN code was translated by the author, with Dr. Wiesel’s permission, to 

MATLAB ® and updated to include perturbation modeling for atmospheric drag for 

orbits below 1,000 km altitude and the gravitational effect of the Earth’s oblateness.  The 

filter is not self-starting and must use an a priori estimate of the target satellite’s state to 

begin calculations.  The initial estimate of the target’s state could be the initial orbit as 

determined using the Gibbs or Herrick-Gibbs Methods results of the first phase or North 

American Aerospace Defense Command (NORAD) two-line element (TLE) sets 

obtained through other sources such as amateur satellite tracking bulletin boards on the 

Internet such as Celestrak (http://celestrak.com). 

 The third orbit determination phase is the updating of the target satellite’s orbit 

elements using observations from a space-borne sensor on-board the chase satellite, 

which is assumed to be the microsatellite, and involves implementing a non-linear least 
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squares orbit determination filter.  In this case, the initial estimate of the target satellite’s 

state is the orbit as determined from ground sensor(s) in phase two. 

 The overarching approach used for this thesis was to go as “low-tech” as possible 

in the development of the tracking architecture and orbit determination routines.  

However, space missions do require a substantial investment in terms of hardware such 

as the satellites and tracking systems, engineers and technicians knowledgeable in space-

systems engineering and integration, and perhaps, most importantly, funding.  The 

rationale behind this “low-tech” approach was to determine if a relatively unsophisticated 

potential adversary such as a terrorist group or developing nation or state could 

reasonably pose a threat to satellites in orbit. 
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II.  Tracking Systems Architecture Background Information 

An open-source literature review was conducted to investigate the types of 

ground-based satellite tracking systems available to a potential adversary and the 

capabilities of those systems.  Emphasis was placed on identifying foreign systems, 

whether they were permanently fixed tracking sites or portable systems which might be 

more favorable to a terrorist-type organization; however, open source literature was 

determined to be extremely lacking.  Even the most authoritative open source, Jane’s 

Radar and Electronic Warfare Systems, had few entries on space tracking systems of 

origin other than Russia or the United States.  Where possible, the capabilities of foreign 

systems are described, but the discussion defaults to describing US systems in order to 

establish a baseline reference for the type of system being reviewed.  The inference is that 

if the United States, which the author assumes has the most well established combination 

of tracking systems, has technical difficulty with certain systems, then an adversary with 

less technical capability or resources will have even greater difficulty.  The most likely 

candidate space tracking systems include radar, Global Positioning System (GPS), 

satellite laser ranging (SLR), and optical tracking.  Each of these systems is discussed in 

the following sections.  The literature review also searched for information on 

microsatellite space borne tracking systems specifically for rendezvous and docking of 

non-cooperating vehicles.  Again, open source literature was found to be non-existent. 
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2.1  Radar 

 Radar is the most likely satellite tracking system to be used by an adversary.  The 

main advantages are its ability to deliver accurate range (distance from the radar to the 

satellite) information, its 24-hour availability (day and night), and its ability to penetrate 

weather such as clouds and rain.  Although orbit determination methods which use 

angles-only (observations of azimuth and elevation or right ascension and declination) do 

exist, Vallado states that “range information allows us to analyze data faster, more 

simply, and more accurately.” (Vallado, 379) 

 The primary disadvantage to using radar is that the adversary is typically bound to 

the radar site’s geographic location and thus may not be able to track all targets of interest 

to the adversary depending on the mission orbits of the desired targets.  To counter this 

situation, an adversary would need to operate a worldwide tracking system such as the 

United States Air Force’s Space Surveillance Network (SSN) and/or have mobile radar 

space track systems.  Since no other state or non-state entity possesses a worldwide 

network, the need for a mobile system becomes obvious if the adversary intends to have 

the ability to track any desired target.  

 Only three references on mobile space track radars were found during the 

literature review.  In his background paper for the 2000 Commission to Assess United 

States National Security Space Management and Organization, “Threats to United States 

Space Capabilities,” author Tom Wilson states 

  “The proliferation of air and theater missile defense radars, such as those 
  associated with the SA-10, have enabled many countries, such as China 
  (who purchase these radars from Russia), to field space-based tracking 
  systems capable of accurately locating objects in LEO.  These mobile 
  radars were originally designed to track reentry vehicles but, due to their 
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  low-cost and mobility, are attractive as space-based object trackers 
  as well.” (Wilson, 7) 
 
Although Wilson appears to say the SA-10 radars are space-based, he means the mobile, 

ground-based radars are used to track space-based objects.  Regrettably, Wilson does not 

provide a reference for his statement regarding the SA-10.  According to Missile Systems 

of the World, the radar used with the SA-10A “Grumble” is the 10-GHz 36N6 (NATO 

Flap Lid) phased-array radar (Missile Systems, 104).  There is also a SA-10C/D 

“Grumble” variant whose associated fire-control radar is the improved three-dimensional 

Tombstone surveillance radar (Missile Systems, 106).  A review of Jane’s Radar and 

Electronic Warfare Systems 2001-2002 does not show the 36N6 Flap Lid but does list the 

30N6 Flap Lid B radar.  According to Jane’s, the 30N6’s detection range is only 90 km 

(Jane’s, 96).  Similarly, for the Tombstone radar (64N6E), the detection range is only 

slightly better at 260 km for a target the size of a MiG-21 aircraft (Jane’s, 98).  Its listed 

accuracies are 30 minutes of arc in azimuth, 35 minutes of arc in elevation, and 200 

meters in range. 

Only one other reference for a mobile space tracking system was found.  The 

Chinese HN-C03-M precision instrumentation radar is listed as having a range of 300 km 

(for a reflecting target of unspecified size).  It operates in the G-band (5.5 – 5.7 GHz) 

with a peak power of 1 megawatt (MW).  Its tracking accuracies are 0.2 min (0.00333 

deg) in both azimuth and elevation and 5 meters in range (Jane’s, 288). 

 In contrast to mobile radar tracking systems, an example of a foreign fixed-base 

radar is the Russian Don-2N Anti-Ballistic Missile (ABM) and space vehicle tracking 

radar.  Jane’s lists its capabilities as full-hemispherical coverage (360o in azimuth and 90o 
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in elevation), detection range of 600 – 1,000 km for a 5-cm space object, and accuracies 

of 0.02-0.04o angular position and 200 meters in range (Jane’s, 37). 

 If a potential adversary is to threaten all of the mission orbits of US space systems 

then it must have the capability to track satellites as far as the geosynchronous belt at a 

range of 22,236 miles (35,786 km).  Obviously, the mobile systems and the one Russian 

fixed-base radar discussed here do not have that capability.  An example of a US radar 

that is capable of ranging to geosynchronous is the AN/FPS-85 Spacetrack radar at Eglin 

AFB, FL.  Built in the 1960s, Spacetrack consists of a single receiver and a single 

transmitter sitting side-by-side.  The receiver face is 192 feet long, 143 feet deep, and 143 

feet high.  The transmitter face is 126 feet long, 95 feet deep, and 95 feet high 

(http://www.globalsecurity/org/space/systems/an-fps-85.htm).  Spacetrack reportedly has 

the capability to track an object the size of a basketball, approximately 457 cm2, at 

geosynchronous range.   

 

2.2 Global Positioning System (GPS) 

 Due to the non-cooperative nature of the target satellite, GPS cannot be used for 

the determination of its orbit in order to pass on to the rendezvous control algorithm for 

the microsatellite.  However, GPS can be used for determining the orbit of the 

microsatellite.  In his paper “Satellite Orbit Determination Using a Single-Channel 

Global Positioning System Receiver,” Mark Psiaki describes the use of single-channel 

GPS receiver intended as a method of reducing the electrical power required in situations 

where the power budget is limited as in the case of a micro- or nano-satellite.  Typically, 

a GPS user’s position is determined by simultaneously evaluating pseudoranges from a 
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minimum of four different GPS satellites with each satellite representing a separate 

channel.  Some receivers may have as many as 12 channels.  Obviously, the more 

channels a given receiver has, the more electrical power is consumed in processing those 

channels.  The single-channel GPS receiver Psiaki describes processes data from four or 

more GPS satellites, but does so sequentially.  This design trades off power with 

performance.  

 In terms of performance, Psiaki states that typical multi-channel receivers could 

determine instantaneous position with an accuracy on the order of 10 meters up to 

altitudes of 3,200 km.  For his simulated LEO case, the single-channel receiver had peak 

steady-state errors of 64-m along track, 128-m across track, and 72-m in altitude (Psiaki, 

141).  By comparison, a 12-channel receiver for this case, had peak errors of 5-m along 

track, 5-m across track, and 13-m in altitude (Psiaki, 142).  Other cases were tested such 

as a highly elliptical orbit and geosynchronous (GEO).  For the GEO case, the peak 

position error was 7 km.  The main cause for error growth for altitudes above 3,200 km is 

the increasing gaps in the receiver’s visibility of GPS satellites with the increase in 

altitude.  This single-channel receiver is mentioned simply as an example of the types of 

equipment that could be placed on a microsatellite. For the purposes of this thesis, the 

hostile microsatellite is assumed to be equipped with a suitable multi-channel space 

Global Positioning System (SGPS) receiver and its position will be considered perfectly 

known. 



  

   13

2.3  Satellite Laser Ranging (SLR) 

 Although satellite laser ranging (SLR) is a technique that allows range 

measurement with an absolute accuracy on the order of + 1 cm, the tracked satellite must 

be specially equipped with retroreflectors, which are sometimes called corner reflectors.  

The retroreflectors are designed so as to reflect the illuminating laser pulse back to the 

transmitting source regardless of the angle of incidence on the reflector, thus allowing 

precise measurements to be made of the returned pulse’s phase and round-trip time of 

flight (NASA Instrument and Sensing Technology: Satellite Laser Technologies 

webpage).  Jon Schwartz, in his paper “Pulse Spreading and Range Correction Analysis 

for Satellite Laser Ranging” further explains the laser retroreflector array (LRA) with the 

following 

  An LRA is a passive device used as the lidar target for ground-based laser 
  ranging stations.  The LRA is composed of a set of retroreflectors 

precisely located in position and orientation (generally to within 1 mm and 
1o, respectively) relative to some fixed point or axis.  It is the precision of 
the location of the cube corner retroreflectors (CCRs) in the LRA that 
allow ranging measurements to be made to the centimeter level.  
(Schwartz, 3597) 
  

 According to information on the International Laser Ranging Service’s website 

(http://ilrs.gsfc.nasa.gov/), only 75 past or current satellites/space missions have been 

equipped for laser ranging.  The majority of these missions are dedicated to Earth 

observation and geophysical research; however, interestingly, thirty of these missions 

could be considered military related.  Twenty-eight of these missions are Russian Global 

Navigation Satellite System (GLONASS) satellites and two are United States Global 

Positioning System satellites (GPS 35 and GPS 36).  Another interesting fact is three of 

the missions listed are Apollo 11, 14, and 15.  These missions left reflector equipment on 
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the surface of the Moon so ranging tests could be performed from stations on Earth.  

Apparently, power generation at ground-based stations for transmitting the laser pulse 

great distances is not a limiting factor, as the distance from the Earth to the Moon is 

356,400 km. 

 At the other end of the satellite laser ranging spectrum from large, powerful laser 

ground stations is a portable system.  Engineers have developed the French Transportable 

Laser Ranging Station (FTLRS) system whose total mass is approximately 300 kg.  The 

optical instrument is a 13-cm diameter telescope installed on a motorized mount.  FTLRS 

can track satellites at altitudes of as much as 3,000 km and is designed to range to the 

Laser Geodynamic Earth Orientation Satellite (LAGEOS) at 6,000 km in another planned 

upgrade.  The standard error of individual measurements during the first observation 

campaign were estimated to be on the order of 2-3 cm (Nicolas, 402).  The laser is an 

Nd:YAG with a double-pass amplifier.  Its wavelength is 532 nm and its energy is 100-

mJ at 1,064 nm.  The laser pulse-width is 100 ps.  Despite the high precision ranging 

measurements, one must keep in mind that satellite laser ranging in this manner assumes 

a cooperative target equipped with retroreflectors and thus a system such as this is not 

likely to be used by a “low-tech” adversary. 

 Since the most probable target satellites for the parasitic satellite will not, in 

general, be equipped with retroreflectors, then if a laser system is to be used for tracking, 

it will have to be in a more traditional radar mode whereby the laser illuminates the target 

satellite’s skin and produces a return.  A quick survey of the United States Air Force’s 

Maui Space Surveillance System (MSSS) shows the state-of-the-art for such a system.  In 

the paper “HI-CLASS on AEOS: A Large Aperture Laser Radar for Space 
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Surveillance/Situational Awareness Investigations,” authors Kovacs, et al, report that the 

Air Force Research Laboratory’s Directed Energy Directorate (AFRL/DE) installed in 

late 2000, a wideband, 12 Joule, 15-Hz, CO2 laser radar on the 3.67-meter aperture 

Advanced Electro-Optics System (AEOS) telescope (Kovacs, 298).  MSSS also has the 

HIgh-Performance CO2 Ladar Surveillance Sensor (HI-CLASS) on the 0.6-meter 

aperture Laser Beam Director (LBD).  The article further states “the moderate power 

(~180 watts) HI-CLASS/AEOS system generates multiple, coherent waveforms for 

precision satellite tracking and characterization of space objects for 1-m2 targets at ranges 

out to 10,000 km.  This system also will be used to track space objects smaller than 30-

cm at ranges to 2,000 km.” (Kovacs, 298)  Authors Hasson, et al, give more specific HI-

CLASS/AEOS performance parameters in their paper “Use of Laser Radar for Small 

Space Object Experiments.”  According to them, the HI-CLASS LBD can perform 

precision 1-m2 satellite tracking to ranges of 2,000 km with accuracies of + 5 m in range 

and + 5 m/s in range rate.  HI-CLASS can also track 5-cm2 objects to 1,000 km.  In 

comparison, the larger AEOS telescope can perform precision 1-m2 satellite tracking to 

ranges of 10,000 km with accuracies of + 1-3 m in range and + 1 m/s in range rate.  

AEOS can also perform sub-cm2 object tracking up to 1,000 km (Hasson, 366).  To put 

these performance capabilities in perspective in terms of a microsatellite, the Tsinghua-

1’s physical parameters were 0.07-m3 volume with a mass of 50 kg, according to a report 

posted on the SpaceDaily website by reporter Wei Long July 11, 2000.  Assuming a 

simple cube shape for the Tsinghua-1 satellite, 0.07-m3 volume translates to a length of 

41.21 cm per side or an area of 1,698 cm2 (0.1698 m2).  The implication of this area is 

even the powerful AEOS telescope cannot track Tsinghua-1 all the way to 10,000 km. 
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 Montenbruck and Gill point out additional limitations of SLR in their book, 

Satellite Orbits: Models, Methods, and Applications, 

  It is noted that laser tracking (other than radar tracking) does not allow 
  auto-tracking of satellites, but depends on the availability of high- 
  precision a priori orbit elements for antenna pointing.  Furthermore, the 

use of SLR for regular tracking is restricted due to its dependence on the 
weather at the laser stations…(Montenbruck, 203) 

 
 

2.4  Optical Tracking 

 Once again, the scarcity of open-source information on tracking systems of 

foreign countries forces one to look at the capabilities of the United States Air Force.   

At the large end of the size spectrum for optical tracking systems, the USAF operates the 

Ground Based Electro-Optical Deep Space Surveillance (GEODSS) system.  At the small 

end of the size spectrum is the Raven automated small telescope system.   

 The GEODSS system has four operational sites located at Socorro, New Mexico; 

Maui, Hawaii; Diego Garcia, British Indian Ocean Territories; and Moron, Spain.  The 

main telescope at each of these sites has a 40-inch aperture telescope which has the 

capability to track an object the size of basketball (457.303 cm2) at geosynchronous range 

(http://www.globalsecurity.org/space/systems/geodss.htm).  

 The Raven automated small telescope system grew out of a program initially set 

up in 1997 to use small (diameter < 0.5 meters) telescopes to track near Earth asteroids.  

The extension to tracking man-made satellites was a natural progression.  As described 

by Paul Sydney, et al, “the Raven system is a design paradigm, not a specific 

configuration of components.  Depending on the mission of the particular telescope, the 

design will be modified using commercial hardware and software, to optimize the 
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configuration for that mission” (Sydney, 237).  The design paradigm is to use commercial 

off-the-shelf (COTS) equipment originally designed for amateur astronomy as the 

complete Raven system.  The Raven at the Maui Space Surveillance System consists of 

14.5-inch diameter f/3 Torus Optics Newtonian telescope on a Paramount GT 1100 

German Equatorial mount.  The imaging device is a charge-coupled device (CCD).  

Activating the CCD shutter triggers a PC-based GPS receiver and timing card for 

accurate time tagging of each image.  The Raven system is controlled by two computers, 

one for controlling the telescope and one for data processing.  The system also has suite 

of weather monitoring equipment (Sydney, 238). 

 In Section 3 of their paper, Autonomous Operations, Sydney, et al, discuss the 

criteria the Raven control system uses to select satellites for tracking.  Criterion number 

five, rate through the telescope’s field-of-view (FOV), may be the limiting factor in using 

Raven, or a similar system, for tracking low earth orbiting satellites.  The Raven control 

software does not allow tracking of objects whose angular velocity exceeds 45 

arcminutes/minute (0.75 degree/minute).  This restriction is described as relating to the 

CCD imaging operation and does not appear to be a physical limitation in terms of 

telescope slewing rate (Sydney, 238).  Even so, this angular velocity limitation prohibits 

the tracking of satellites below altitudes of approximately 13,930 km according to the 

following equation from Space Mission Analysis and Design, 3rd Ed.: 

 orbital angular velocity (deg/min) = 2/3610170415.2 −× r           (1)      

 where r is the distance from the center of the central body (Earth) to the satellite in 

kilometers.  To determine the altitude, subtract the Earth’s radius, 6378.135 km from r. 

 



  

   18

Thus, a Raven-type system would most likely not be used in a microsatellite rendezvous 

mission below altitudes of 13,930 km.  In terms of measurement accuracy, the Raven 

system “demonstrated the ability to produce topocentric right ascension and declination 

observations of GEO satellites with RMS errors under two arcseconds (one standard 

deviation).” (Sydney, 241)             

 At approximately the same time the Air Force Research Laboratory was 

developing the Raven system, engineers at the Rocketdyne Division of Boeing North 

American were experimenting with a slightly smaller telescope with emphasis on 

portability.  In their paper “Description and Experimental Results of a 58-lb Portable 

LEO Satellite Tracker,” authors Tansey, Campbell, and Koumvakalis outline their use of 

an 8-inch diameter f/10 telescope on a T-Point mount and controlled by commercial 

software.  This system is reportedly capable of adjustable slew rates to six degrees per 

second (360 degrees/minute) (Tansey, 78).  This means the system can track at all 

altitudes as the angular velocity at the surface of the Earth is 4.261 degrees/minute.  

Tansey, et al report “typical tracks at 600 km to 1,000 km are routine with track errors 

less than 50 µrad [0.00286 deg] peak to valley for the duration of the pass” (Tansey, 83). 

 

2.5  Selection of Tracking System Architecture 

2.5.1 Ground Tracking Systems 

 Having reviewed the candidate tracking systems, their capabilities and their 

limitations, it is evident that no single system is sufficient to cover all possible mission 

orbits (LEO, MEO, and GEO).  The space tracking systems that have evolved have done 

so based on those very capabilities and limitations for their type.  Thus, those countries or 
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persons involved in satellite tracking must use a ‘system of systems’ in order to cover all 

orbits.  While this does complicate matters in terms of the number of different systems 

that must be employed, it simplifies matters in that one can choose the simplest system 

within each type.  Thus, for altitudes below approximately 14,000 km, radar is the most 

likely system to be used with a relatively modest ground station since a suitable mobile 

system was not found.  Laser ranging could also be used for LEO orbits below 10,000 

km, but it must be remembered that even the AEOS system could not track Tsinghua-1 

all the way to 10,000 km.  For orbits higher than 14,000 km, the Raven small telescope 

can be used. 

 

2.5.2  Microsatellite On-board Tracking Sensor  

 A literature review was also conducted to find background information on sensors 

for satellite rendezvous.  Again, great difficulty was encountered in trying to find 

information suitable for a microsatellite rendezvous mission with a non-cooperative 

target.  Several articles were found that described video systems for terminal control; 

laser ranging between cooperative targets equipped with retroreflectors; relative GPS; 

and rendezvous radars for larger spacecraft such as the Space Shuttle and the Orbital 

Maneuvering Vehicle.  The Space-based Radar Handbook describes both of these 

systems, but regrettably has no information on microsatellites as its publication date is 

1989.  For background purposes, the performance of the Space Shuttle’s rendezvous 

radar and the Orbital Maneuvering Vehicle’s radar are shown in Table 1.  
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Table 1  Examples of Space Rendezvous Radar Parameters 
 Space Shuttle 

Rendezvous Radar 
OMV 
Radar 

Range 12 nmi 4.5 nmi 
Angle accuracy (3σ) 8 mrad 20 mrad 
Angle rate (3σ) 0.14 mrads/s N/A 
Range accuracy (3σ) 80 ft, R < 1.3 nmi 

1% of R, 1.3 < R < 4.9 nmi
300 ft, 4.9 < R < 12 nmi 

Greater of 20 ft or 
2% of range 

Range rate accuracy (3σ) 1 ft/s, R < 10 nmi Greater of 0.1 ft/s or 
2% of range rate 

Space Shuttle Rendezvous Radar data (Cantafio, 201); OMV data (Cantafio, 210) 
 

 An example of a range measuring system that might be suitable for a 

microsatellite mission is the laser rangefinder on the Near-Earth Asteroid Rendezvous 

(NEAR) spacecraft.  The NEAR laser rangefinder (NLR) was developed at the Johns 

Hopkins Applied Physics Laboratory in the early 1990s.  The complete NLR system has 

a mass of only 4.9 kg and a volume of 14.75” x 9” x 8.5.”  NLR has a maximum range of 

just over 100 km and a range accuracy of 2 meters (Cole, 124).  Since the NLR is a laser 

rangefinder, no value for range rate measurement was listed.  For the MATLAB 

simulation, it is assumed that a laser radar of comparable size and range and range rate 

measuring capability is available.  The range rate accuracy is assumed to be 2 m/s. 
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III.  Methodology 

 

For the problems of initial orbit determination and orbit updating, various 

combinations of observation data must be processed using a suitable solution method.  In 

Table 6-1 of Fundamentals of Astrodynamics and Applications, Vallado lists those data 

combinations and solution methods along with any restrictions in terms of minimum sets 

of a particular observation combination.  Vallado’s Table 6-1 is reproduced below. 

Table 2  Types of Tracking Data for Initial Orbit Determination and Orbit Updating 
Data Type Restrictions Solution Method 

Range rate ( ρ& ) None Estimation 
Azimuth ( β ), elevation ( el ) 3 sets minimum Laplace, Gauss, Double-r 
Range ( ρ ), azimuth ( β ), 
elevation ( el ) 

2 sets minimum SITE-TRACK, then Lambert (2) or 
GIBBS/HGIBBS 

Range ( ρ ), azimuth ( β ), 
elevation ( el ), range rate ( ρ& ) 

2 or 3 sets 
minimum 

SITE-TRACK 

Range ( ρ ), azimuth ( β ), 
elevation ( el ), range rate ( ρ& ), 
azimuth rate ( β& ), 
elevation rate ( le& )  

None SITE-TRACK 

Topocentric right ascension, tα , 
and declination, tδ   

3 sets minimum Laplace, Gauss, Double-r 

Range ( ρ ) 6 simultaneous, 
None 

Trilateration, Estimation 

          (Vallado, 378) 

 

For Table 2 above, the solution methods in bold italics are algorithms Vallado has 

outlined in his book.  Several of those algorithms, or pieces thereof, were implemented in 

this thesis; however, portions of those algorithms using rate information other than range 

rate were not utilized. 
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3.1 Simulation Data Generation 

Since “real” observations were not taken with “real” sensors to process through 

the non-linear least squares orbit determination filter, simulated data for range, range rate, 

azimuth, elevation, right ascension, and declination were generated.  The following 

equations were used to generate the simulated data. 

The satellite’s state vector, X
r

, is represented with the Earth-centered Inertial 

(ECI) position vector, rr , and velocity vector, vr .  X
r

 is written  

              X
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The equations of motion for the two-body problem are written  

                             3r
rr
r

&&r µ−=                                                     (3) 

where  r&&r  is the satellite’s acceleration vector, 2
3

4415.600,398 s
km=µ  is the Earth’s 

gravitational parameter, and 222 zyxr ++=  is the magnitude of the position vector.  

Using this formulation, the equations of motion for the satellite’s state vector in first 

order form are 

X
dt
Xd &r
r
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 The equations of motion were integrated using MATLAB’s built-in ordinary 

differential equation solver function, ode45, to obtain the satellite’s state at specified time 

intervals along the trajectory.  Then using equations from Vallado’s Algorithm 15: 

RAZEL (Vallado, 173), range ρ , azimuth β , and elevation el were calculated. 

 To begin the calculations for range, the tracking site’s ECI position vector must 

be determined.  First, two auxiliary terms associated with the Earth’s shape are 

calculated.  The first auxiliary term is 

)(sin1 22
gde

RC
φ⊕

⊕
⊕

−
=            (5) 

where kmR 1363.378,6=⊕ is the Earth’s equatorial radius, 560818192214.0=⊕e is the 

Earth’s shape eccentricity (not its orbital eccentricity), and gdφ is the tracking site’s 

geodetic latitude.  The second auxiliary term is  

          )1( 2
⊕⊕⊕ −= eCS                                             (6) 

Using these two auxiliary terms, the horizontal (in the plane of the Earth’s equator) and 

the vertical (towards the North Pole for a positive (northern) latitude and towards the 

South Pole for a negative (southerly) latitude) components of the tracking site’s position 

vector are determined next.  The horizontal component is 

)cos()( gdellphCr φδ += ⊕                                                     (7) 

where ellph  is the tracking site’s height in kilometers (or other consistent units) above the 

reference geoid.  The vertical component is 

)sin()( gdellpK hSr φ+= ⊕                                                     (8) 

The tracking site’s ECI position vector is then 
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where LSTθ  is the Local Sidereal Time (LST) at the tracking site.  Local Sidereal Time 

can be calculated using Vallado’s Algorithm 1: LSTIME.  First, calculate 1UTT , the 

number of Julian centuries elapsed from the epoch J2000, 

525,36
0.545,451,20

1
−

=
JDTUT                                                 (10) 

where 0JD is the Julian day number for the calendar date of interest and 2,451,545.0 is 

the Julian day of January 1, 2000.  Second, calculate the Greenwich mean sidereal time at 

midnight 0000 Universal Time, 0GSTθ , in degrees, for the date of interest 

    3
1

82
110 106.200038793.077005361.000,364606184.100 UTUTUTGST TTT −×−++°=θ       (11) 

Third, calculate the Greenwich sidereal time for the specific time of the day by 

10 UTGSTGST ⊕+= ωθθ                                           (12) 

where ⊕ω  is the magnitude of the Earth’s rotational (angular) velocity and UT1 is the 

elapsed time since midnight in seconds.  Finally, local sidereal time is given by 

λθθ += GSTLST                                                     (13) 

where λ is the tracking site’s longitude (east longitude is positive and west longitude is 

negative). 

With both the satellite and the tracking site positions known, range in ECI 

coordinates from the tracking station to the satellite may be calculated as 

siteIJKIJKIJK rr rrr
−=ρ                                                 (14) 
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The relative velocity vector from the tracking station to the satellite in ECI coordinates is 

calculated next by 

siteIJKIJK rv rrr&r ×−= ⊕ωρ                                            (15) 

where ⊕ω
r  is the Earth’s rotational (angular) velocity vector in radians/sec given by 
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Once the ECI range and relative velocity vectors are determined, they must be 

transformed (rotated) from the ECI coordinate system to the topocentric horizon SEZ 

(South-East-Zenith) coordinate system.  The combined transformation matrix  
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         (17) 

leads to the rotations 

[ ] IJKSEZ IJKtoSEZ ρρ
rr

=                                         (18) 

[ ] IJKSEZ IJKtoSEZ ρρ &r&r =                                         (19) 

The range (a scalar) is simply the magnitude (vector norm) of the SEZ range vector 

SEZρρ
r

=                                                              (20) 

The elevation angle from the tracking station’s horizon to the satellite is given by 


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

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= −

ρ
ρZel 1sin                                                     (21) 

and the azimuth angle, β , is given by 
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The final equation used from Vallado’s RAZEL algorithm yields the range rate, which is 

given by 

ρ
ρρρ SEZSEZ
&rr

&
⋅

=                                                     (25) 

In addition to developing equations for range, range rate, azimuth, and elevation, 

equations were also developed for topocentric right ascension and declination using 

Vallado’s Algorithm 14: Topocentric (Vallado, 168).  This algorithm is analogous to the 

RAZEL algorithm since the range vector in ECI coordinates is calculated but is not 

transformed to SEZ coordinates.  The declination angle (positive above the celestial 

equator and negative below) is determined similar to elevation by 

ρ
ρδ K

t =                                                    (26) 

and the right ascension is determined similar to azimuth by 
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3.2  Initial Orbit Determination 

With radar (or other sensor) providing range, azimuth, and elevation data, the 

satellite’s position and velocity vectors in ECI coordinates can be calculated.  First, the 

satellite’s SEZ range coordinates are found using the radar data directly 
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The range rate in SEZ coordinates is found by taking the derivatives of the range 

component equations with respect to all three variables by the chain rule to yield 
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Next, the SEZ coordinate values must be transformed (rotated) to the IJK coordinate 

frame by the combined transformation matrix 
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which then leads to the rotations 

[ ] SEZIJK SEZtoIJK ρρ
rr

=                                         (33) 

[ ] SEZIJK SEZtoIJK ρρ &r&r =                                         (34) 

The ECI position and velocity vectors are then determined by 
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siteIJKIJKIJK rr rrr
+= ρ                                                 (35) 

siteIJKIJKIJK rv rr&rr
×+= ⊕ωρ                                        (36) 

Since radar sites do not always gather angular rate data, then the Gibbs and Herrick-

Gibbs Methods can be used to determine the initial velocity vector, 2vr , associated with 

the second of three sequential position vectors, 2r
r . 

 

3.2.1  Gibbs Method for Initial Orbit Determination 

 The Gibbs Method in Vallado’s algorithm 48 (Vallado, 414) is outlined below.  

First, assuming three sequential position vectors, in ECI coordinates are available, then 

form the vectors 

2112 rrZ rrr
×=                                                           (37) 

3223 rrZ rrr
×=                                                           (38) 

1331 rrZ rrr
×=                                                           (39) 

Next, test that the input vectors are coplanar by calculating the angle 













 ⋅
−°= −

123

1231cos90
rZ
rZ

cop rr

rr

α                                               (40) 

If the vectors are exactly coplanar, then 0=copα .  If the vectors are not exactly coplanar, 

then the user must determine an acceptable error tolerance and proceed.  Vallado 

recommends no more than 2 or 3 degrees.  The vectors must also have some angular 

separation within their common plane.  The Gibbs Method works with at least 1o 
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separation and is superior to the Herrick-Gibbs Method when the separation is greater 

than 5o.  The angular separation can be tested by calculating the two angles 

21
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12 )cos(
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where 12α  is the angle between vectors 1r
r  and 2r

r  and 23α  is the angle between vectors 2r
r  

and 3r
r .  If the angular separation is sufficient, then four intermediate vectors can be 

calculated 
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2rDB rrr
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Using one final scalar given by 
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calculate the velocity vector associated with 2r
r  
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With both position and velocity known, the orbit is considered determined. 
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3.2.2   Herrick-Gibbs Initial Orbit Determination 

 The Herrick-Gibbs Method, which also determines the velocity vector associated 

with the second of three sequential position vectors, is used when the angular separation 

is less than 1o.  The Julian Dates associated with the three position vectors are also used 

in this algorithm.  First, calculate the time differences between the position vectors 

1331 JDJDt −=∆                                                   (49) 

2332 JDJDt −=∆                                                  (50) 

1221 JDJDt −=∆                                                   (51) 

From this point, the Herrick-Gibbs Method is similar to the Gibbs Method by also testing 

whether the position vectors are coplanar and checking the angular separation 
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If the degree of coplanarness and separation are acceptable, then the velocity vector is 
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and, again, with both the position and velocity known, the orbit is considered determined.  

The orbit determined by the Gibbs or Herrick-Gibbs methods can then be used as the 

estimate for the satellite’s reference trajectory in the non-linear least squares filter.  

 

3.3  Non-linear Least Squares Orbit Determination Filter 

 Wiesel’s non-linear least squares algorithm from his book Modern Methods of 

Orbit Determination is described in this section.  First, assuming there are multiple 

observations, then for each observation time ti , propagate the state vector to the 

observation time ti and obtain the state transition matrix Φ ( )0, tti .  With the satellite’s 

state vector written as 
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the state transition matrix is a 6 x 6 matrix whose components are the partial derivatives 

of each state component with respect to each component of the state itself 
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At ti = t0 this results in the 6 x 6 identity matrix, 66xI , 
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                                   (59) 

Next, obtain the residual vector ri = zi – G( X
r

).  zi is the  n x 1 measured data vector for 

this observation time, where n is the number of types of observations being taken.  For 

example, if at observation ti, observations were taken for range, azimuth, and elevation, 

then n = 3.  G( X
r

) is the predicted data vector as a function of the current state vector X
r

.  

The form of  G( X
r

) depends on what predicted data is needed.   For example, assume a 

radar, whose position vector is known, is measuring range, azimuth, and elevation to a 

target satellite, then the predicted range, azimuth, and elevation based on the propagated 

reference trajectory would be calculated using the same equations that were used to 

generate the simulation data described in section 3.1.  These predicted data are then 

subtracted from the corresponding measured data to form the residual vector 
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predictedmeasuredi zzr −=                                            (60) 

which would take the form 











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

−
−
−

=

predictedmeasured

predictedmeasured
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i

elel
r ββ

ρρ
                                    (61) 

It should be noted that noise was added to the generated data using a Gaussian random 

number in order to give “realistic” measurement data.  Next, calculate Hi for this 

particular data point.  Hi, the linear observations model, is the n x 6 matrix of partial 

derivatives of the G vector with respect to the state evaluated on the reference trajectory 

where n is still the number of types of observation being taken 

refX
j

i
ij X

GH |
∂
∂

=                                          (62) 

where i  = 1 to n is the G vector component being differentiated and j = 1 to 6 is the state 

vector component G is the differentiation variable.  Together, i and j, are the row and 

column indices of the n x 6 H matrix.  

The G vectors and their associated H matrices for the data types coded in the 

simulation program are shown next.  Since H is an n x 6 matrix, if a specific value for an 

element of H is not shown, it is assumed to be 0. 

Gi( X
r

) = 222, zyxRange ++=ρ                                (63) 
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Gi ( X
r

) = Range rate, 
ρ
ρρρ
&rr

&
⋅

=                                      (75) 

ρ&
r is the relative velocity vector in ECI coordinates from the tracking site to the satellite 

for the case of the ground-based orbit determination filter or the relative velocity vector 

in ECI coordinates from the microsatellite to the target satellite for the on-orbit version of 

the orbit determination filter 

















−
−
−

=

IJKsiteIJKsat

IJKsiteIJKsat

IJKsiteIJKsat

zz
yy
xx

,,

,,

,,

&&

&&

&&
&rρ                                          (76) 

















−
−
−

=

IJKmicroIJKett

IJKmicroIJKett

IJKmicroIJKett

zz
yy
xx

,,arg

,,arg

,,arg

&&

&&

&&
&rρ                                     (77) 

When the dot product and division have been performed the resulting equation for range 

rate is then 
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and similarly for the on orbit case from microsatellite to the target satellite.  The 1 x 6 H 

matrix for range rate is 
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iH =4                                                              (82) 

ρ
ρ y

iH =5                                                              (83) 
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Next, calculate the observation matrix, Ti = HiΦ, and add new terms to the running sums 

of the matrix  

∑ −

i
ii

T
i TQT 1                                                           (93) 

and the vector 

∑ −

i
ii

T
i rQT r1                                                            (94) 

where Q  is the instrumental covariance (or observation covariance) matrix and 1−Q is its 

inverse.  The matrix ii
T

i TQT 1−  must be invertible for a new estimate of the reference 

trajectory to exist.  Wiesel calls this the observability condition.  When all data has been 

processed calculate the covariance of the correction 

1

i
i

1-
i

T
i  TQT

−








= ∑xPδ                                            (95) 

and the state correction vector at epoch 

∑ −=
i

ii
T

ix rQTPtx rr 1
0 )( δδ                                          (96) 

Update the reference trajectory vector by adding the state correction vector  
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)()()( 0001 txtXtX refref
srr

δ+=+                                             (97) 

Determine if the process has converged.  If it has, then 1+refX
r

is the new estimate of the 

reference trajectory with covariance xPδ .  Finally, check the residuals to see if they are of 

appropriate magnitude and distribution. 

 

3.4  Perturbations 

Perturbations, deviations from a normal, idealized, or unperturbed motion, which 

can be included within the dynamics model in the simulation include Earth oblateness 

effects from the J2 zonal gravity harmonic, third-body gravitational effects from the Sun 

and the Moon, and atmospheric drag.  Each is discussed below. 

 

3.4.1  J2 

The accelerations, in ECI coordinates, resulting from the Earth’s oblateness, or 

non-spherical shape, are 
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where 0010826269.02 =J is the dimensionless second zonal gravity harmonic 

coefficient, µ is the Earth’s gravitational parameter, and ⊕R  is the Earth’s equatorial 

radius.    
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3.4.2  Third-Body Gravitational Effects 

 The acceleration of the satellite relative to the Earth due to the gravitational 

influence of a third body such as the Sun or Moon can be calculated by the following 

equation from page 10 of Fundamentals of Astrodynamics 

∑
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rr

r&&r                                   (99) 

where the first term is the two-body equation; however, this equation includes the 

)( 21 mm + term for completeness where 2m is the satellite’s mass .  It is usually assumed 

that the satellite’s mass is insignificant relative to the mass of the central body and is thus 

dropped, leaving µ=1Gm , the gravitational parameter.  The summation term is the third-

body contribution to the acceleration.  jGm is 1.32712428E+11 km3/s2 for the Sun and 

4,902.799 km3/s2 for the Moon.  2jrr is the vector from the third body to the satellite and 

1jrr  is the vector from the third body to the central body, which for this simulation is 

Earth. 

 

3.4.2.1  Sun Position Vector 

 The Sun’s geocentric position vector to be used in the equation for third-body 

gravitational effects can be calculated by Vallado’s Algorithm 18: Sun (Vallado, 183). 

The algorithm begins by computing 

525,36
0.545,451,21

1
−

= UT
UT

JDT                                            (100) 
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where 1UTT is the number of Julian centuries elapsed from the epoch J2000 and 1UTJD  is 

the Julian date of the time of interest. 

The mean longitude of the Sun is 

177005361.000,364606184.280 UTM T
sun

+°=λ                           (101) 

The Sun’s mean anomaly is 

TDBsun TM 05034.999,355277233.357 +°=                                 (102) 

TDBT , barycentric dynamical time, is a more precise parameter that includes more details 

such as relativistic effects, etc. that are not needed for the level of precision for most 

analyses.  In this case, TDBT  may be assumed to be approximately equal to 1UTT .  

Then for this algorithm, the longitude of the ecliptic is 

)2sin(019994643.0)sin(914666471.1 sunsunMecliptic MM
sun

+°+= λλ      (103) 

where the ecliptic is the mean plane of the Earth’s orbit about the Sun. 

The magnitude of the Sun’s position vector, in astronomical units, is 

)2cos(000139589.0)cos(016708617.0000140612.1 sunsunsun MMr −−=         (104) 

Also for this algorithm,ε , the obliquity of the ecliptic, which is the angle between the 

Earth’s mean equator and the ecliptic, is given by 

TDBT0130042.0439291.23 −°=ε                                   (105) 

Finally, the Sun’s position vector, in astronomical units, is given by 
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3.4.2.2  Moon Position Vector 

Similarly, the Moon’s geocentric position vector can also be computed by 

Vallado’s Algorithm 19: Moon (Vallado,186).  This algorithm also begins by computing 

a time parameter 

525,36
0.545,451,2−

= TDB
TDB

JDT                                           (107) 

The longitude of the ecliptic is 
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The latitude of the ecliptic is 

)20.332,4076.217sin(17.0)18.003,63.318sin(28.0
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The parallax is 

)38.335,4132.259cos(0095.0)85.198,4779.134cos(0518.09508.0 TDBTDB TT −+++°=℘  
)70.397,9549.269cos(0028.0)23.534,8907.235cos(0078.0 TDBTDB TT ++++               (110) 

 
The magnitude of the position vector in Earth radii is then 
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The position vector is then  
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where ε , the obliquity of the ecliptic is given in radians by Equation 1-58 of Vallado 
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3929 1080.81086.2000226966.040909280.0 TDBTDBTDB TTT −− ×+×−−=ε            (113) 

To convert from Earth radii to kilometers multiply by 6,378.1363. 

 

3.4.3  Atmospheric Drag 

 The acceleration due to atmospheric drag is given by Equation 7-24 from Vallado 

(Vallado, 498) 
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1 ρ−=                                   (114) 

where Dc is the satellite’s coefficient of drag, A is the satellite’s cross-sectional area 

normal to the satellite’s velocity vector, m is the satellite’s mass, ρ is the atmospheric 

density at the satellite’s altitude, and relvr is the satellite’s velocity vector relative to the 

Earth’s rotating atmosphere.  The relative velocity is given by 
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The atmospheric density is given by an exponential model which gives values from 0 to 

1,000 km of altitude.  The exponential model is 

H
hh

o

oellp

e
)( −−

= ρρ                                                   (116) 

where oρ is the reference density for the specific altitude, ellph is the actual altitude of the 

satellite, oh is the reference altitude, and H is the scale height.  Vallado tabulates values 
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for these parameters in Table 7-4 of his book, Fundamentals of Astrodynamics and 

Applications. 

 

3.5  Equations of Variation 

 The equations of variation are the partial derivatives of the acceleration term 

equations with respect to the state and are used to form the 6 x 6 A matrix, which in turn, 

is used to form the derivative of the state transition matrix, Φ, as  

),()(),( 00 tttAtt
dt
d

Φ=Φ=Φ &                                         (117) 

The 36 components of Φ& are combined with the 6 components of the satellite’s state 

vector derivatives X&
r

to form the “total” state derivative which is integrated by ode45. 

 

3.5.1  Equations of Variation for the Two-Body Problem 

From Wiesel (Wiesel, 78), the equations of variation for the basic two-body 

problem are 
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where 3 x 3φ is the null matrix, I is a 3 x 3 identity matrix, and rrA is  
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Since the acceleration terms for the two-body problem are dependent only on the 

satellite’s position, the A matrix is non-zero and/or non-unity only where there are 

position-related component terms.  Any velocity related terms would appear in the three 

rightmost columns, as will be seen in Section 3.5.4. 

 

3.5.2  Equations of Variation for J2 

 Similar to the basic two-body problem, the equations of variation for J2 are 

dependent only on position-related terms and thus populate only the lower 3 x 3 corner of 

the A matrix 
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The equations for the individual components are 
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3.5.3  Equations of Variation for Third-Body Gravitational Effects 

 The equations of variation for third-body gravitational effects are also only 

position-dependent.  In this case, care must be taken to use the appropriate gravitational 

parameter for the third-body of interest, ,3 body−µ  and not that of Earth.  The individual 

component equations are 
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3.5.4  Equations of Variation for Atmospheric Drag 

 For the models incorporated in this simulation, only atmospheric drag has terms 

that are velocity-dependent.  For this reason, the equations of variation for atmospheric 

drag also populate the lower right 3 x 3 corner of the A matrix in addition to the lower left 

3 x 3 corner.  The eighteen equations of variation for atmospheric drag are  
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IV.  Results and Analysis 

4.1  Gibbs and Herrick-Gibbs Initial Orbit Determination Methods 

Although a possible satellite tracking architecture employing a system of systems 

that allowed satellite tracking at all ranges from low-Earth orbit (LEO) to 

geosynchronous (GEO) was suggested in Section 2.5, the most probable orbital region for 

a covert microsatellite rendezvous mission is low-Earth orbit (LEO).  With this fact in 

mind, several cases based on a Defense Meteorological Satellite Program orbit at 830-km 

sun-synchronous altitude were studied. 

First, the Gibbs and Herrick-Gibbs initial orbit determination methods were 

compared for performance accuracy for their common application area of in-plane 

angular separations between 1o and 5o.  As previously stated in Section 1, the Gibbs 

method is preferred for larger angular separations, especially over 5o, while the Herrick-

Gibbs method is preferred for smaller angular separations.  Simulated tracking data 

consisting of range, azimuth, and elevation measurements was generated using the 

accuracy numbers of both the Eglin Spacetrack radar and the Russian Don-2M anti-

ballistic missile radar and corrupted with a random number generator to simulate process 

noise.  The initial state vector used as the truth model had an epoch of April 5, 2003 at 

00:00:00.00 UCT given by 
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The simulated data for the Don-2M radar assumed a range accuracy of 200 meters 

and 0.03o in both azimuth and elevation.  Using equation (30) from Section 3, this data 

was used to calculate x, y, and z position coordinates in the SEZ-frame and then 

transformed to the IJK-frame.  For the case of 1o of angular separation, the three position 

vectors used in both the Gibbs and Herrick-Gibbs methods are given in Table 3. 

 

Table 3  Position Vectors from the Don-2M Radar Separated by 1o 
 x (km) y (km) z (km) 
1r  1,630.53547 -7,019.29836 -119.05177 

2r  1,599.46588 -7,028.79482 15.66486 

3r  1,571.1354 -7,034.33703 147.6602 
 

Remembering that both the Gibbs and Herrick-Gibbs methods both determine the 

velocity associated with the second position vector, 2r , their results are shown in Table 4. 

 

Table 4  State Vectors Separated by 1o from Don-2M Radar Data 
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)

Gibbs 1,599.46588 -7,028.79482 15.66486 -1.02787 -0.25881 4.61946
Herrick-Gibbs 1,599.46588 -7,028.79482 15.66486 -1.65012 -0.41776 7.40921

 

 The same type of data was generated for the Eglin Spacetrack radar with assumed 

accuracies of 5 meters in range and 0.0154o in azimuth and 0.0147o in elevation.  The position 

vectors generated from simulated Eglin data are given in Table 5 and the results of the Gibbs and 

Herrick-Gibbs methods using this data are shown in Table 6. 
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Table 5   Position Vectors from the Eglin Spacetrack Radar Separated by 1o 
 x (km) y (km) z (km) 
1r  1,629.78305 -7,022.51937 -116.51275 

2r  1,599.99858 -7,028.25713 14.87741 

3r  1,569.93708 -7,032.14408 146.52768 
 
 
Table 6  State Vectors Separated by 1o from Eglin Spacetrack Radar Data 

 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)
Gibbs 1,599.99858 -7,028.25713 14.87741 -1.91216 -0.30763 8.40459

Herrick-Gibbs 1,599.99858 -7,028.25713 14.87741 -1.66250 -0.26738 7.30721
 

The differences between the truth state vector and the two radar state vectors are shown 

in Table 7. 

 

Table 7  Difference Between Truth and Radar State Vectors for 1o Separation 
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s) 
Don-2M 
Gibbs -3.182783 -1.081374 15.66486 0.073229 -0.007708 -2.730588
Herrick-Gibbs -3.182783 -1.081374 15.66486 -0.549021 -0.166658 0.059162
Eglin 
Gibbs -2.650083 0.53769 14.87741 -0.811061 -0.056528 1.054542
Herrick-Gibbs -2.650083 0.53769 14.87741 -0.561401 -0.016278 -0.042838
  

 

From the data in Table 7, several facts can be noted.  For an angular separation of 

approximately 1o, the Herrick-Gibbs is more accurate than the Gibbs method for both the 

Don-2M and Eglin radars as expected.  Although, the same 2r  position vector was used in 

the Gibbs and Herrick-Gibbs methods, the difference is in the velocity error magnitudes.  

The velocity error magnitude for theDon-2M radar using the Gibbs method is 2.731 km/s 

while the Herrick-Gibbs method velocity error magnitude is only 0.576 km/s, roughly 

21% of the Gibbs method.  For the more accurately measuring Eglin radar, the velocity 
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error magnitude using the Gibbs method is 1.331 km/s compared to only 0.563 km/s for 

the Herrick-Gibbs method.  The Herrick-Gibbs method, in this case, is 2.36 times better.   

The same type of comparison was made between the two methods and the two 

radars using position vectors separated by approximately 5o.  The position vectors 

calculated from the simulated Don-2M data are shown in Table 8. 

  

Table 8  Position Vectors from the Don-2M Radar Separated by 5o 
 x (km) y (km) z (km) 
1r  1,686.49254 -6,982.79171 -601.78566 

2r  1,599.46588 -7,028.79482 15.66486 

3r  1,501.82853 -7,019.49588 629.85516 
 

The position vectors resulting from the Gibbs and Herrick-Gibbs methods are 

given in Table 9. 

 

Table 9  State Vectors Separated by 5o from Don-2M Radar Data 
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)

Gibbs 1,599.46588 -7,028.79482 15.66486 -1.07891 -0.21268 7.19367
Herrick-Gibbs 1,599.46588 -7,028.79482 15.66486 -1.10055 -0.21881 7.34038

 

Similarly, the position vectors calculated from the simulated Eglin data are shown 

in Table 10 and the state vectors determined from these vectors are given in Table 11. 

 

Table 10   Position Vectors from the Eglin Spacetrack Radar Separated by 5o 
 x (km) y (km) z (km) 
1r  1,684.70942 -6,982.28071 -601.80866 

2r  1,599.99858 -7,028.25713 14.87741 

3r  1,502.43363 -7,021.71168 631.71985 
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Table 11  State Vectors Separated by 5o from Eglin Spacetrack Radar Data 
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)

Gibbs 1,599.99858 -7,028.25713 14.87741 -1.08650 -0.23523 7.35306
Herrick-Gibbs 1,599.99858 -7,028.25713 14.87741 -1.08633 -0.23499 7.35163
 

Finally, the difference between the truth model vector and the calculated state vectors is 

shown in Table 12. 

Table 12  Difference Between Truth and Radar State Vectors for 5o 
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s) 
Don-2M 
Gibbs -3.182783 -1.081374 15.66486 0.022189 0.038422 -0.156378
Herrick-Gibbs -3.182783 -1.081374 15.66486 0.000549 0.032292 -0.009668
Eglin 
Gibbs -2.650083 0.53769 14.87741 0.014599 0.015872 0.003012
Herrick-Gibbs -2.650083 0.53769 14.87741 0.014769 0.016112 0.001582

 

Similar to the 1o case, several facts can be noted from Table 12.  Although the 

Gibbs method is expected to give more accurate results because of the larger angular 

separation, it actually produces more error in the velocity components for the vectors for 

the Don-2M radar.  The Gibbs method velocity magnitude error for the Don-2M is 0.162 

km/s while the Herrick-Gibbs method velocity error magnitude is only 0.0337 km/s, a 

factor of 4.82 better.  For the Eglin radar, the Gibbs method is more accurate as would 

normally be expected but only slightly.  The Gibbs method velocity error is 0.0217 km/s 

and the Herrick-Gibbs method error is 0.0219 km/s, less than 1% difference.  Finally, the 

more accurately measuring Eglin radar produces the more accurate estimate of position 

and velocity.  
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4.2  Non-linear Least Squares Orbit Determination Filter 

 This section discusses two illustrative examples about the performance of the 

non-linear least squares orbit determination filter.  First, Table 13 shows the effect on 

accuracy of the estimated state vector with an increasing number of data points.  The first 

vector listed was used as the truth model of an 830-km altitude, sun-synchronous orbit to 

generate 10, 20, 30, 40, and 100 data points at 60-second intervals using only simple two-

body motion and not including any perturbation forces.  The second vector listed is the 

initial estimate of the target satellite’s state vector used in the non-linear least squares 

orbit determination filter.  The position vector components x, y, and z were each 

displaced 3.0 km to simulate a 5.2 km error in the knowledge of the target’s position.  

Velocity components were not perturbed.  In this rather simple case, it can be seen that 

the target’s estimated converges closer to the truth model quickly with just 20 points but  

 

                 Table 13  Comparison of Estimated State Vectors Based on 
                                 Increasing Number of Data Points 

  x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s) 
Truth 
(data) 

1,602.648 -7,027.71 0.0 -1.101099-0.2511027.350048 

Filter 
Estimate 

1,599.649 -7,030.71 3.0 -1.011099-0.2511027.350048 

10 data 
Points 

1,586.364 -7,027.961.180124 -1.09513 -0.2455417.343681 

20 data 
Points 

1,602.496 -7,027.81 -0.02949 -1.10077 -0.2511947.350026 

30 data 
points 

1,602.63 -7,027.69 -0.00197 -1.10112 -0.2510667.350052 

40 data 
points 

1,602.644 -7,027.74 -0.00205 -1.10105 -0.2511367.350043 

100 data 
points 

1,602.643 -7,027.71 -0.00131 -1.1011 -0.2511017.350048 
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is still approximately 184 meters in error.  With 40 data points, the filter has converged 

within approximately 30 meters of the truth model.  At 100 data points, the estimated 

state vector has converged to within approximately 5 meters of the truth model.  

Obviously, more data is always desired from a standpoint of increased accuracy; 

however, in a rendezvous mission, time to collect data may not be available and 

rendezvous maneuvers will have to be planned based on less accurate position estimates.  

The convergence criteria for all of these cases was each state component must be within 5 

percent its variance as computed in the covariance matrix, P.  Within the 6 x 6 covariance 

matrix, the variances , 2
iσ , are the diagonal entries corresponding to the particular state 

vector component i.  Taking the square root of the variance gives the standard deviation 

which then establishes an upper and lower bound on the vector component 

)()( iiiii XXX σσ +<<−  

Table 14 shows the variances for the 10, 20, 30, 40, and 100 data point cases above. 

 

Table 14 Comparison of Variances for 10, 20, 30, 40, and 100 Data Points 
 
 

2
xσ   (km2) 2

yσ   (km2) 2
zσ  (km2) 2

x&σ  (km/s)2 2
y&σ  (km/s)2 2

z&σ (km/s)2 

10 data 
Points 

245.6172 0.467814 22.62718 1.180 E-6 2.3883 E-5 5.076 E-5 

20 data 
Points 

0.106890 0.022710 0.001767 3.576 E-8 1.0605 E-7 2.972 E-10 

30 data 
points 

0.0018319 0.003897 0.000108 2.144 E-8 8.5994 E-9 8.247 E-11 

40 data 
points 

0.0016032 0.0011008 9.1517 E-5 1.117 E-8 1.8390E-9 1.220 E-11 

100 data 
points 

1.1489 E-5 3.7707 E-7 1.7362 E-6 5.579 E-12 1.003E-12 2.214 E-13 
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The final example shows a comparison between a typical GPS semi-synchronous orbit 

modeled with and without third-body gravitational perturbations in the dynamics.  In 

general, this example simply illustrates that perturbations increase the uncertainty in state 

vector estimate.  Table 15 shows the state vector used to generate simulated data, the 

state vector used as the initial estimate to start the filter, and the estimated state vectors 

with and without the third-body perturbation.  Table 16 shows the variances for these two 

cases. 

 
Table 15 Comparison of GPS State Vectors with & without Third-Body 
               Perturbation 

  x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s) 

Truth 
data 

-5,522.5788 25,981.690 0.0 -2.173367 0.461963 3.173233

Filter 
Start 

-5,529.0979 25,980.302 9.519979 -2.173014 0.463621 3.173232

Without 
3-body 

Perturbation  

-5,524.102 25,981.601 -1.00242 -2.173227 0.461914 3.173383

With 3-body 
 Perturbation 

-5,526.1636 25,981.523 -2.20056 -2.173041 0.461843 3.173551

 
 
Table 16 Variances for GPS Orbit with and without Third-Body Perturbation 

 2
xσ  (km2) 2

yσ  (km2) 2
zσ  (km2) 2

x&σ  (km/s)2 2
y&σ  (km/s)2 2

z&σ (km/s)2 

Without 
 3-body 

Perturbation 

4.73205 0.028302 1.861128 3.7143 E-8 4.4585 E-9 4.1236 E-8

With 3-body 
Perturbation 

8.93414 0.121836 2.702021 8.3335 E-8 3.9442 E-9 7.1389 E-8
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V.  Conclusions and Recommendations 

 The objective of this thesis was to investigate the feasibility of a technologically 

unsophisticated adversary implementing a “low-tech” satellite tracking system 

architecture and orbit determination program to perform a covert microsatellite 

rendezvous with a larger uncooperative target.  The open-source literature review 

investigated the types of tracking sensors and their representative accuracies.  These “real 

world” accuracy values were then used in a non-linear least squares orbit determination 

filter.  Since the basis of this thesis was a simulation experiment which involved 

programming a non-linear least squares orbit determination filter using simulated data, it 

should come as no surprise the filter converges to a solution assuming that the equations 

of motion, equations of variation, and other supporting subroutines were properly 

developed and coded in the MATLAB® program.  The real test of the filter would be to 

deploy a real-world sensor, take satellite observations with that sensor, then process the 

data through the non-linear least squares filter. 

 The most probable orbital location for a hostile, covert, microsatellite rendezvous 

mission is low-Earth orbit (LEO) given the difficulty of detecting and tracking the 

microsatellite at mid-Earth orbit (MEO) and geosynchronous (GEO) altitudes.  The 

current assessment, based on open-source information, is that neither China nor any other 

foreign country possesses an operational microsatellite anti-satellite weapon.  Assuming 

that a potential adversary could acquire or develop the technology to design, build, and 

launch a microsatellite, and track it with sufficient accuracy, the overall conclusion is that 

someday some organization will be able to perform a microsatellite rendezvous with a 

non-cooperative target. 
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 Further work which could be pursued in relation to this thesis would be to develop 

a Kalman filter to allow for real-time processing of observation data such as range and 

range rate for the orbit determination and updating processes.  While the non-linear least 

squares orbit determination filter does converge to a solution, it performs best with large 

numbers of observations which take more collection time and thus delays processing.  

Another approach to the orbit determination problem would be to investigate an 

architecture where orbit determination is done solely on the ground and the maneuver 

commands are uplinked to the microsatellite in order for it to rendezvous with the target.  

This model would relieve the requirement for a precise tracking device on-board the 

microsatellite.  
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Appendix A. 

 

% On_Orbit_Non_Linear_Least_Squares_Filter 

% Capt Brian L. Foster 

% 22 January 2003 

format long g 

 

% Data type 1 = range only; data type 2 = range and range-rate 

data_type = 1; 

 

% Open output files 

fid1 = fopen('on_orbit_sat_positions_output.txt','w+'); 

fid2 = fopen('on_orbit_range_and_rate_residuals_output.txt','w+'); 

fid3 = fopen('on_orbit_state_and_state_corrections_output.txt','w+'); 

fid4 = fopen('target_reference_trajectory_output.txt','w+'); 

fid5 = fopen('on_orbit_range_only_output.txt','w+'); 

fid6 = fopen('on_orbit_covariance_matrix.txt','w+'); 

 

% Read in observations from data file 

% Range only data 

if(data_type == 1) 

load('on_orbit_range_only_data.txt','-ascii'); 

[ob_type,order_ob,JDay,ob_time,range_ob]... 
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    =textread('on_orbit_range_only_data.txt','%d %d %f %f %f',-1); 

end 

% Range and range-rate data 

if(data_type == 2) 

load('on_orbit_range_and_rate_data.txt','-ascii'); 

[ob_type,order_ob,JDay,ob_time,range_ob,range_rate_ob]... 

    =textread('on_orbit_range_and_rate_data.txt','%d %d %f %f %f %f',-1); 

end 

 

% Determine the number of observations which will determine the number 

% of times through the data processing loop. 

num_obs = length(ob_type); 

 

% Initial guess (estimate) of state vector for the target satellite 

r_tgt(1) = 1605.648663; 

r_tgt(2) = -7030.713446; 

r_tgt(3) = 3.0; 

v_tgt(1) = -1.101099; 

v_tgt(2) = -0.251102; 

v_tgt(3) = 7.350048; 

 

% Initial position of the microsatellite 

r_micro(1) = 1597.121868; 
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r_micro(2) = -7028.875456; 

r_micro(3) = 36.750077; 

v_micro(1) = -1.109613; 

v_micro(2) = -0.213701; 

v_micro(3) = 7.349950; 

 

% Initialize the state vectors for the target and the microsatellite. 

% The state vector is a 6 x 1 column vector. 

% X(1) = I component of position vector r in the IJK coordinate system 

% X(2) = J component of position vector r in the IJK coordinate system 

% X(3) = K component of position vector r in the IJK coordinate system 

% X(4) = I component of velocity vector v in the IJK coordinate system 

% X(5) = J component of velocity vector v in the IJK coordinate system 

% X(6) = K component of velocity vector v in the IJK coordinate system 

 

% Initial guess (estimate) of state vector for the microsat in column vector form 

X_micro_ref = [r_micro(1); r_micro(2); r_micro(3); v_micro(1);... 

        v_micro(2); v_micro(3)]; 

 

X_micro = X_micro_ref; 

 

% Initial guess (estimate) of state vector for the target satellite in column vector form 

X_tgt_ref = [r_tgt(1); r_tgt(2); r_tgt(3); v_tgt(1); v_tgt(2); v_tgt(3)]; 
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% Initialize state corrections to 0 

del_X_tgt = [0; 0; 0; 0; 0; 0; 0]; 

 

iteration = 0; 

 

fprintf(fid3,'%3d %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f 

%15.6f %15.6f %15.6f\n', iteration, X_tgt_ref(1), X_tgt_ref(2), X_tgt_ref(3), 

X_tgt_ref(4), X_tgt_ref(5), X_tgt_ref(6), del_X_tgt(1), del_X_tgt(2), del_X_tgt(3), 

del_X_tgt(4), del_X_tgt(5), del_X_tgt(6));       

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Flags to turn on ( xxxx_flag = 1) or off (xxxx_flag = 0)  perturbations.                                                       

% J2 is the second zonal gravity harmonic                              

% drag can be calculated for altitudes up to 1,000 km with density     

%   calculated in function 'atmosphere.'                               

% third-body includes gravtitational effects of the Sun and Moon                                                                      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

J2_flag = 0; 

drag_flag = 0; 

third_body_flag = 0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Satellite parameters needed for estimating atmospheric drag.         
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tgt_drag_coefficient = 1.0;     % Dimensionless 

tgt_sat_mass = 1000.0;          % Kilograms 

tgt_sat_area = 1.0;             % Square meters 

micro_drag_coefficient = 1.0;   % Dimensionless 

micro_sat_mass = 100.0;         % Kilograms 

micro_sat_area = 0.1698;        % Square meters 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set up z, the total data (observation) vector.                       

% The "order" of z is the number of "types" of data                    

% associated with a single observation time.  For example,             

% if processing range and range-rate then the order is 2.              

% The dimension of z is (number of obs) x (order).                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set maximum number of iterations for the filter to loop through. 

max_iter = 20; 

iteration = 1; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Begin iteration loop for Non-Linear Least Squares 

while iteration <= max_iter 

    

    % "Mode" value is the flag for deciding whether only the equations  
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    % of motion (EOM)(mode = 0) or EOM and equations of                 

    % variation (EOM + EOV)(mode = 1) are processed in subroutine "rhs" 

   % which provides the differential equations to be integrated.       

  mode = 1; 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  % Initialize the "total" state vector.                        

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     % "n" is the number of equations to be integrated. 

    % 42 is the total number of equations. 6 for the state components 

    % plus 36 for the components of the state transition matrix, phi. 

    n = 42; 

        

    % Initialize the state transition matrix for the target, 

    % phi_target, to the identity matrix. 

    phi_tgt = eye(6); 

    

    % If mode not equal to 1, the totatl state vector is only the 

    % target satellite's position and velocity. 

    if(mode ~= 1) 

         X_tgt = [X_tgt_ref(1); X_tgt_ref(2); X_tgt_ref(3); X_tgt_ref(4);... 

            X_tgt_ref(5); X_tgt_ref(6)];           

    end 
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    % If mode is equal to 1, the total state vector is the target 

    % satellite's position and velocity and its state transition 

    % matrix.  Formed as 42 by 1 column vector since ode45 expects 

    % a column vector. 

     

    if(mode == 1) 

        X_tgt = [X_tgt_ref(1); X_tgt_ref(2); X_tgt_ref(3); X_tgt_ref(4);... 

            X_tgt_ref(5); X_tgt_ref(6); phi_tgt(1,1); phi_tgt(1,2);... 

            phi_tgt(1,3); phi_tgt(1,4); phi_tgt(1,5); phi_tgt(1,6);... 

            phi_tgt(2,1); phi_tgt(2,2); phi_tgt(2,3); phi_tgt(2,4);... 

            phi_tgt(2,5); phi_tgt(2,6); phi_tgt(3,1); phi_tgt(3,2);... 

            phi_tgt(3,3); phi_tgt(3,4); phi_tgt(3,5); phi_tgt(3,6);... 

            phi_tgt(4,1); phi_tgt(4,2); phi_tgt(4,3); phi_tgt(4,4);... 

            phi_tgt(4,5); phi_tgt(4,6); phi_tgt(5,1); phi_tgt(5,2);... 

            phi_tgt(5,3); phi_tgt(5,4); phi_tgt(5,5); phi_tgt(5,6);... 

            phi_tgt(6,1); phi_tgt(6,2); phi_tgt(6,3); phi_tgt(6,4);... 

            phi_tgt(6,5); phi_tgt(6,6)];     

    end 

     % Verify X is a 42 x 1 column vector.  

    X_tgt_size = size(X_tgt); 

     

    % Re-initialize the microsatellite's state vector to the beginning 

    % for each iteration or else the range will diverge with each 
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    % successive iteration. 

    X_micro = X_micro_ref; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Initialize buffers for matrix product accumulation.              

    % The matrices used in this program are:                           

    %   phi - state transition matrix (6 x 6)                         

    %   H   - observation model (order_obs x 6)                        

    %   T   - observation matrix; product of H * phi; (order_obs x 6)  

    %   Q   - instrument covariance matrix (order_obs x order_obs)     

    %   r   - residual vector                                         

    %   P   - state covariance matrix (6 x 6)                       

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % For product of (T transpose) * (Q inverse) *   (r) 

    % Dimensions:      (6 x n)     *   (n x n)   * (n x 1) = (6 x 1) 

    T_tran_Q_inv_r = zeros(6,1); 

        

    % Initialize state covariance matrix inverse (6 x 6) 

    P_inv = zeros(6); 
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 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Observation (measurement data) processing loop                  

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    for iob = 1:num_obs 

        % Write iteration and observation numbers 

        % to screen for progress monitoring. 

         fprintf('Iteration %d of %d\n',iteration,max_iter) 

         fprintf('%d of %d observations is processing.\n', iob, num_obs) 

         fprintf('\n')  % Write blank line to screen for spacing. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Numerically integrate state and state transition matrix          

        % derivatives to observation time.                               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

       % Time "vector" to pass to integration routine ode45. 

        if(iob == 1) 

            time_vec = 0:ob_time(1); 

        end 

         

        if(iob > 1) 

            time_step = ob_time(iob) - ob_time(iob-1); 

            time_vec = 0:time_step; 
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        end 

         

        % Also establish the Julian Date to pass on to function 'rhs' for 

        % third-body perturbations calculation. 

        JD = JDay(iob); 

         

        % Set absolute error tolerance for ode45 function for the target 

        % satellite.  Must match the target's state column vector size. 

        % IMPORTANT: Dr. Tragesser recommends the error tolerance be  

        % very tight, 1 x e-8 or smaller such as 1 x e-10. 

        abs_tol = 1e-8 * ones(42,1); 

         

        % Set options for ode45, including relative error tolerance. 

        options = odeset('RelTol', 1e-8, 'AbsTol', abs_tol); 

         

        % ode45 is one of MATLAB's built-in numerical integrators.  It is 

        % based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince 

        % pair.  It is a one-step solver in computing X(t), it needs only 

        % the solution at the immediately preceding time point, X(t n-1). 

         

        % Format of the integration routine call: 

        %   @rhs is the function containing the equations to be integrated. 

        %   time_vec is the time span to be integrated over. 
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        %   X is the current state of the system (initial conditions). 

        %   options contain the information for absolute/relative  

        %   tolerances, etc. 

        % This mode statement MUST be here in order to alternate between 

        % the target satellite and the microsatellite. 

        mode = 1; 

         

        % NOTE: at this point mode =1 because the state transition matrix 

        % for the target must be integrated since it is the target's 

        % state we are trying to estimate with the filter and not the microsatellite. 

        [t,Y_tgt] = ode45(@on_orbit_rhs, time_vec, X_tgt, 

options,mode,JD,third_body_flag, J2_flag, drag_flag, tgt_drag_coefficient, 

tgt_sat_mass,tgt_sat_area); 

         

        % The state of X_micro does not need to go through the equations of 

        % variation since we are not estimating the microsatellites orbit. 

        % Thus, mode = 0 and the state is a 6 x 1 column vector. 

        mode = 0; 

        abs_tol = 1e-8 * ones(6,1); 

        options = odeset('RelTol', 1e-8, 'AbsTol', abs_tol); 

      

% Propagate the microsatellite's state vector.         



  

   70

[t,Y_micro] = ode45(@on_orbit_rhs, time_vec, X_micro, 

options,mode,JD,third_body_flag,... 

    J2_flag, drag_flag,micro_drag_coefficient,micro_sat_mass,micro_sat_area); 

        % ode45 returns a matrix that is of dimensions 

        % (# of times steps x # of equations integrated) 

        Y_tgt_ode_size = size(Y_tgt); 

        Y_micro_ode_size = size(Y_micro); 

         

        % Determine the length of the state matrices. 

        last_row_tgt = Y_tgt_ode_size(1); 

        last_row_micro = Y_micro_ode_size(1); 

         

        % Extract only the last time step (row) values of state X 

        % because ode45 expects a 42 component column vector 

        % instead of large matrix that would be passed next time. 

        % last row, the ':' means all columns associated with that row 

        X_micro = Y_micro(last_row_micro,:); 

        X_tgt = Y_tgt(last_row_tgt,:); 

         

        % Write the target and microsatellite position vectors to output file 

        fprintf(fid1,'%15.5f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f\n',... 

        ob_time(iob),X_tgt(1),X_tgt(2),X_tgt(3),X_micro(1),X_micro(2),X_micro(3)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Read observation data for this particular observation time. 

        % These are the 'real' measured data.                  

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        if(data_type == 1) 

            z_obs = [range_ob(iob)]; 

        end 

               

        if(data_type == 2) 

            z_obs = [range_ob(iob); range_rate_ob(iob)]; 

        end 

         

       % Form the satellites' position vectors. 

        r_tgt = [X_tgt(1); X_tgt(2); X_tgt(3)]; 

        r_micro = [X_micro(1); X_micro(2); X_micro(3)]; 

         

        % Form the satellites' velocity vectors. 

        v_tgt = [X_tgt(4); X_tgt(5); X_tgt(6)]; 

        v_micro = [X_micro(4); X_micro(5); X_micro(6)]; 
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        % Call to function 'obser' to get the predicted data vector, 

        % which is based on the current states (position and velocity vectors). 

        % zpred, H matrix, Q_inv matrix.         

        [zpred,H,Q_inv] = obser(r_tgt,v_tgt,r_micro,v_micro,data_type); 

         zpred_size = size(zpred); 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Begin the matrix calculations for this observation           

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Initialize the residual rejection flag. 

        rejected = 0; 

         

        % Calculate the residuals vector.  Residuals are the  

        % difference of where we think the target satellite is 

        % and where the observations say it is. 

            if(data_type == 1) 

            r = [z_obs(1,1) - zpred(1,1)]; 

         

        % Write residuals to screen         

        fprintf('Range residual: %f kilometers.\n',r(1,1)) 

        fprintf('\n')  % Blank line for spacing. 
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        end       

         

         

         

        if(data_type == 2) 

            r = [z_obs(1,1) - zpred(1,1); z_obs(2,1) - zpred(2,1)]; 

         

        % Write residuals to screen         

        fprintf('Range residual: %f kilometers.\n',r(1,1)) 

        fprintf('Range-rate residual: %f kilometers/second\n',r(2,1)) 

        fprintf('\n')  % Blank line for spacing. 

        end       

        residual_vector_size = size(r); 

 ndata = length(r); 

       reject = 30000.0;  

             

           for i = 1:ndata  

                % Compare the elements of r(i) with its corresponding 

                % diagonal entry of the Q_inv matrix. 

                if(abs(r(i,1)) > reject/sqrt(Q_inv(i,i)))   

                    % Set residual rejection flag to sort/omit rejected obs. 

                    rejected = 1; 

                end 
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           end  % End for i = 1:ndata     

             

         

        % If the observation is not rejected, process its matrices. 

        % Check if 'rejected' is anything other than 1 (not equal to 1). 

        if (rejected ~= 1)  

             

        % Extract the target satellite's phi matrix in normal form 

        % from the 'total' state column vector X_tgt. 

        phi = [X_tgt(7)  X_tgt(8)  X_tgt(9)  X_tgt(10) X_tgt(11) X_tgt(12); 

               X_tgt(13) X_tgt(14) X_tgt(15) X_tgt(16) X_tgt(17) X_tgt(18); 

               X_tgt(19) X_tgt(20) X_tgt(21) X_tgt(22) X_tgt(23) X_tgt(24); 

               X_tgt(25) X_tgt(26) X_tgt(27) X_tgt(28) X_tgt(29) X_tgt(30); 

               X_tgt(31) X_tgt(32) X_tgt(33) X_tgt(34) X_tgt(35) X_tgt(36); 

               X_tgt(37) X_tgt(38) X_tgt(39) X_tgt(40) X_tgt(41) X_tgt(42)]; 

          

         % Matrix dimension statements for debugging. 

         % Remove ; at end of line to write to screen. 

         H_size = size(H); 

         phi_size = size(phi); 

             

         % Form matrix product  T    =    H   *  phi 

         % Dimensions:       (n x 6) = (n x 6)*(6 x 6), where  
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         % n = ndata = order_ob      

         % T is the observation matrix. 

         T = H * phi; 

         T_size = size(T); 

   

         % Form product P_inv = (T transpose)*(Q inverse)*(T) 

         % This product is the "observability condition."  It  

         % must be invertible for an estimate to exist. 

         % Dimensions:   (6 x 6)= (6 x n)*(n x n)    *(n x 6) 

         P_inv = P_inv + (T' * Q_inv * T); 

                   

         % State estimate covariance, P 

         P = inv(P_inv); 

         position_variance = sqrt(P(1,1) + P(2,2) + P(3,3)); 

          

         % Write observed and predicted range and range rate and  

        % residuals to output file. 

        if(data_type == 1) 

        fprintf(fid5,'%15.5f %14.8f %14.8f %14.8f %14.8f\n',... 

            ob_time(iob),z_obs(1,1),zpred(1,1),r(1,1),position_variance); 

        end         
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 % Write observed and predicted range and range rate and  

        % residuals to output file. 

        if(data_type == 2) 

        fprintf(fid2,'%15.5f %14.8f %14.8f %14.8f %10.6f %10.6f %10.6f %14.8f\n',... 

            ob_time(iob),z_obs(1,1),zpred(1,1),r(1,1),z_obs(2,1),... 

            zpred(2,1),r(2,1),position_variance); 

        end 

 

         % Matrix dimension statements for debugging. 

         Q_inv_size = size(Q_inv); 

         T_size = size(T); 

         T_trans_size = size(T'); 

         r_size = size(r); 

 

         % Form product (T transpose)*(Q inverse)*(r) 

         % Dimensions: (6 x 1) = (6 x 1) + (6 x n)*(n x n)*(n x 1) 

         T_tran_Q_inv_r = T_tran_Q_inv_r + (T' * Q_inv * r); 

                       

        end  % End to go with check of rejected ~= 1. 
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        % Reset rejected flag to 0 so that the next observation will be evaluated. 

        rejected = 0;                  

   end  % End of loop for iob = 1:num_obs 

        % Invert matrix H transpose Q inverse H to find covariance P 

        % Dimensions: (6 x 6) = inv((6 x n)*(n x n)*(n x 6)) 

        %P = inv(H' * Q_inv * H); 

        P = inv(P_inv); 

         

        % Multiply P by T transpose Q inverse r to get correction 

        % to the state vector. 

        % Initialize state correction term, dx, to zero first 

        del_X_tgt = zeros(6,1); 

        

        % Dimensions: (6 x 1) = (6 x 6)*(6 x 1) 

        del_X_tgt = del_X_tgt + P * T_tran_Q_inv_r; 

   

        if((abs(del_X_tgt(1) > 0.05*abs(P(1,1))))... 

                | (abs(del_X_tgt(2) > 0.05*sqrt(abs(P(2,2)))))... 

                | (abs(del_X_tgt(3) > 0.05*sqrt(abs(P(3,3)))))... 

                | (abs(del_X_tgt(4) > 0.05*sqrt(abs(P(4,4)))))... 

                | (abs(del_X_tgt(5) > 0.05*sqrt(abs(P(5,5)))))... 

                | (abs(del_X_tgt(6) > 0.05*sqrt(abs(P(6,6)))))) 
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            % The vertical bar(s) in the above 'if' statement is/are 

            % MATLAB's logical 'or' operator. 

      

            convergence = 0 

        else 

            convergence = 1 

        end 

 

    % Add in state corrections to reference state (trajectory) 

    % This for the state at EPOCH only.  NOT every time step. 

    X_tgt_ref = X_tgt_ref + del_X_tgt 

         

    % Write this iterations state correction dx to output file here. 

    fprintf(fid3,'%3d %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f 

%15.6f %15.6f %15.6f %15.6f\n',... 

    

iteration,X_tgt_ref(1),X_tgt_ref(2),X_tgt_ref(3),X_tgt_ref(4),X_tgt_ref(5),X_tgt_ref(6), 

    del_X_tgt(1),del_X_tgt(2),del_X_tgt(3),del_X_tgt(4),del_X_tgt(5),del_X_tgt(6));       

             

        if(convergence == 1) 

              % Just add a number to get iterations to exceed 

              % maximum iteration and exit the while loop; 

              fprintf('Converged on iteration %d of %d\n',iteration,max_iter) 
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              iteration = max_iter + 5;  

        end 

         

    % Increment iteration value 

    iteration = iteration + 1 

         

    end  % End statement for the iterations to max_iter loop  

 

% Write values to screen             

X_tgt_ref 

del_X_tgt 

P 

 

% Write the final covariance matrix components to output file here. 

for i = 1:6     

fprintf(fid6,'%25.20f %25.20f %25.20f %25.20f %25.20f %25.20f\n',... 

    P(i,1),P(i,2),P(i,3),P(i,4),P(i,5),P(i,6)); 

end 

 

% Principal error axes 

% Extract the 3 x 3 space and velocity covariance submatrices 

% Space covariance is the upper lefthand 3 x 3 of the P matrix 

% Velocity covariance is the lower righthand 3 x 3 of the P matrix 
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for i = 1:3 

    for j = 1:3 

        space_P(i,j) = P(i,j); 

        velocity_P(i,j) = P(i+3,j+3); 

    end 

end 

 

% Eigenvector/value analysis of the covariance matrices 

[V,D] = eig(space_P) 

[W,E] = eig(velocity_P) 

 

for i = 1:3 

    raxis(i) = D(i,i); 

    vaxis(i) = E(i,i); 

end 

 

for i = 1:3 

    if(raxis(i) < 0.0) 

        negative_r_axis = 'Space covariance has a negative value!' 

    else 

        raxis(i) = sqrt(raxis(i)); 

    end 

end 
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for i = 1:3 

    if(vaxis(i) < 0.0) 

        negative_v_axis = 'Velocity covariance has negative value!' 

    else 

        vaxis(i) = sqrt(vaxis(i)); 

    end 

end 

 

% Write position and velocity principal error axes to the screen. 

raxis 

vaxis 

 

% Close output files. 

fclose(fid1); 

fclose(fid2); 

fclose(fid3); 

fclose(fid4); 

fclose(fid5); 

fclose(fid6);   

does_it_work = 'YES, FINALLY!'; 
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% Call plot function 

[plotted] = plot_residuals(data_type) 

% End of on-orbit non-linear least squares filter. 
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Appendix B. 

 

function dX = on_orbit_rhs(t,X,mode,JD,third_body_flag,J2_flag,... 

    drag_flag,drag_coefficient,sat_mass,sat_area) 

 

% Capt Brian L. Foster 

% 27 January 2003 

 

% This MATLAB code modeled after FORTRAN code written by  

% Dr. William E. Wiesel for MECH 731 Modern Methods of  

% Orbit Determination. 

 

% This function calculates the equations of motion (EOM) and/or 

% not and the equations of variation (EOV) for the problem of 

% a spacecraft in orbit around the Earth. 

 

% X is the 42-component 'total' state vector 

%   X(1-3) are the x,y,z components of the position vector 

%   X(4-6) are the x,y,z components of the velocity vector 

%   X(7-42) are the (6 x 6) state transition matrix 

%   stored row by row 

 

% dX is the 42-component state vector derivatives 
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%   dX(1-3) are the x,y,z derivatives of position (velocity) 

%   dX(4-6) are the x,y,z derivatives of velocity (acceleration) 

%   dX(7-42) are the derivatives of the state transition matrix, phi dot 

 

% Open output files for the various acceleration components 

% The 'w+' instructs MATLAB that the file can be both read and written  

% to and that any previous data in the file is overwritten. 

fid1 = fopen('gravity_accleration_output.txt','w+'); 

fid2 = fopen('J2_acceleration_output.txt','w+'); 

fid3 = fopen('drag_acceleration_output.txt','w+'); 

fid4 = fopen('totatl_acceleration_output.txt','w+'); 

 

% Earth radius, RE, in kilometers 

RE = 6378.1363; 

 

% Earth gravitational parameter, mu, in km^3/sec^2 

mu_earth = 398600.4415; 

 

% The N-Body Problem with the origin at the center of the Earth. 

% Reference Vallado pages 116-119 or Bate, Mueller, and White page 10. 

 

% Position derivatives = velocity 

dX(1) = X(4); 
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dX(2) = X(5); 

dX(3) = X(6); 

 

% Velocity derivatives = gravity acceleration due to the Earth 

r_vector = [X(1); X(2); X(3)]; 

r = norm(r_vector); 

 

f_earth(4) = - mu_earth*X(1)/r^3; 

f_earth(5) = - mu_earth*X(2)/r^3; 

f_earth(6) = - mu_earth*X(3)/r^3; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculate 3rd body perturbation accelerations, if desired.     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

if(third_body_flag == 1) 

     

    % Sun's gravitational parameter, km^3/s^2 

    mu_sun = 1.32712428e11; 

     

    % Call function 'Sun' for Sun's GEOCENTRIC position vector in km 

    [r_sun] = Sun(JD); 
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    % Vector from Sun to satellite 

    dx_sun = X(1) - r_sun(1); 

    dy_sun = X(2) - r_sun(2); 

    dz_sun = X(3) - r_sun(3); 

     

    % Distance from the Sun to the satellite cubed 

    r32_sun = (dx_sun^2 + dy_sun^2 + dz_sun^2)^(3/2); 

     

    % Distance from center of Earth (central body) to Sun cubed. 

    rp132_sun = (r_sun(1)^2 + r_sun(2)^2 + r_sun(3)^2)^(3/2); 

     

    % Acceleration terms due to Sun; 3rd body form of the equations 

    f_sun(4) = -mu_sun*(dx_sun/r32_sun - r_sun(1)/rp132_sun); 

    f_sun(5) = -mu_sun*(dy_sun/r32_sun - r_sun(2)/rp132_sun); 

    f_sun(6) = -mu_sun*(dz_sun/r32_sun - r_sun(3)/rp132_sun); 

     

    % Moon's gravitational parameter, km^3/s^2 

    mu_moon = 4902.799; 

     

   % Call function 'Moon' for Moon's GEOCENTRIC position vector in km 

   [r_moon] = Moon(JD); 

    

   % Vector from Moon to the satellite 
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   dx_moon = X(1) - r_moon(1); 

   dy_moon = X(2) - r_moon(2); 

   dz_moon = X(3) - r_moon(3); 

    

   % Distance from the Moon to the satellite cubed 

   r32_moon = (dx_moon^2 + dy_moon^2 + dz_moon^2)^(3/2); 

    

   % Distance from center of Earth (central body) to the Moon cubed 

   rp132_moon = (r_moon(1)^2 + r_moon(2)^2 + r_moon(3)^2)^(3/2); 

    

   % Acceleration terms due to the Sun; 3rd body form of equations 

   f_moon(4) = -mu_moon*(dx_moon/r32_moon - r_moon(1)/rp132_moon); 

   f_moon(5) = -mu_moon*(dy_moon/r32_moon - r_moon(2)/rp132_moon); 

   f_moon(6) = -mu_moon*(dz_moon/r32_moon - r_moon(3)/rp132_moon); 

    

else 

    f_sun(4)   = 0.0; 

    f_sun(5)   = 0.0; 

    f_sun(6)   = 0.0; 

    f_moon(4)  = 0.0; 

    f_moon(5)  = 0.0; 

    f_moon(6)  = 0.0; 
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end     % 'end' statement to go with third body flag check 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculate the perturbation of the Earth's oblateness due to J2. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if(J2_flag == 1) 

    % J2 gravitational zonal coefficient from JGM-2 from Appendix D 

    % of Vallado (1997). 

    J2 = -0.1082626925638815e-2; 

     

    % Second harmonic J2 terms, km/s^2 

    f_J2(4) = -3*J2*mu_earth*(RE^2)*X(1)/(2*r^5)*(1-((5*X(3)^2)/r^2)); 

     

    f_J2(5) = -3*J2*mu_earth*(RE^2)*X(2)/(2*r^5)*(1-((5*X(3)^2)/r^2)); 

     

    f_J2(6) = -3*J2*mu_earth*(RE^2)*X(3)/(2*r^5)*(3-((5*X(3)^2)/r^2)); 

     

else 

    f_J2(4) = 0.0; 

    f_J2(5) = 0.0; 

    f_J2(6) = 0.0; 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculate the perturbation effect of atmospheric drag.           

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if(drag_flag == 1) 

    % Earth rotational rate in rad/s. 

    earth_rotation_rate = 0.000072921158553; 

     

    % Calculate the satellite's velocity vector relative to the 

    % Earth's rotating atmosphere. 

     

    % Relative velocity, km/s. 

    v_rel(1) = X(4) + earth_rotation_rate * X(2); 

    v_rel(2) = X(5) - earth_rotation_rate * X(1); 

    v_rel(3) = X(6); 

     

    % Magnitude of relative velocity, km/s. 

    v_rel_mag = norm(v_rel); 

     

    % Determine altitude above Earth's surface, km. 

    altitude = r - RE; 
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    % Call function 'atmosphere' to get atmospheric density. 

    [density,scale_height] = atmosphere(altitude); 

     

    % Drag acceleration terms. 

    f_drag(4) = -0.5 * (drag_coefficient * sat_area / sat_mass)... 

        * density * v_rel_mag * v_rel(1) * 1000.0; 

     

    f_drag(5) = -0.5 * (drag_coefficient * sat_area / sat_mass)... 

        * density * v_rel_mag * v_rel(2) * 1000.0; 

     

    f_drag(6) = -0.5 * (drag_coefficient * sat_area / sat_mass)... 

        * density * v_rel_mag * v_rel(3) * 1000.0; 

     

else 

     

    f_drag(4) = 0.0; 

    f_drag(5) = 0.0; 

    f_drag(6) = 0.0; 

     

end  % 'end' statement to go with drag_flag check. 

 

% Total acceleration for the equations of motion. 

dX(4) = f_earth(4) + f_J2(4) + f_drag(4) + f_sun(4) + f_moon(4); 



  

   91

dX(5) = f_earth(5) + f_J2(5) + f_drag(5) + f_sun(5) + f_moon(5); 

dX(6) = f_earth(6) + f_J2(6) + f_drag(6) + f_sun(6) + f_moon(6); 

 

 

if(mode ~= 1) 

    dX = [dX(1); dX(2); dX(3); dX(4); dX(5); dX(6)]; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% EQUATIONS OF VARIATION                                             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% If mode = 1, then the equations of variation are processed. 

if(mode == 1) 

    % Calculate the A matrix (A = gradient of vector f). 

    % Initialize to 0 first. 

    A = zeros(6,6); 

     

    % A is a 6 x 6 matrix. 

    % The upper right 3 x 3 corner is an identity matrix. 

    A(1,4) = 1.0; 

    A(2,5) = 1.0; 

    A(3,6) = 1.0; 

     

    % Diagonal terms of the A matrix lower left corner 3 x 3 
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    A(4,1) = -mu_earth/r^3 + 3*mu_earth*X(1)^2/r^5; 

    A(5,2) = -mu_earth/r^3 + 3*mu_earth*X(2)^2/r^5; 

    A(6,3) = -mu_earth/r^3 + 3*mu_earth*X(3)^2/r^5; 

     

    % Off-diagonal terms of the A matrix lower left corner 3 x 3 

    % Use symmetry to avoid as much calculation as possible. 

    A(4,2) = 3*mu_earth*X(1)*X(2)/r^5; 

    A(5,1) = A(4,2); 

    A(4,3) = 3*mu_earth*X(1)*X(3)/r^5; 

    A(6,1) = A(4,3); 

    A(5,3) = 3*mu_earth*X(2)*X(3)/r^5; 

    A(6,2) = A(5,3); 

     

     

    % Equations of variation due to third body effects 

    if(third_body_flag == 1) 

         

         % Sun's gravitational parameter, km^3/s^2 

         mu_sun = 1.32712428e11; 

     

         % Call function 'Sun' for Sun's GEOCENTRIC position vector in km 

         [r_sun] = Sun(JD); 
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         % Vector from Sun to satellite 

         dx_sun = X(1) - r_sun(1); 

         dy_sun = X(2) - r_sun(2); 

         dz_sun = X(3) - r_sun(3); 

     

         % Distance from the Sun to the satellite cubed 

         r32_sun = (dx_sun^2 + dy_sun^2 + dz_sun^2)^(3/2); 

          

         % Distance from the Sun to the satellite to fifth power 

         r52_sun = r32_sun^(5/3); 

          

         % Diagonal terms for the Sun 

         A_sun(4,1) = -mu_sun*(1/r32_sun - 3 * dx_sun^2/r52_sun); 

         A_sun(5,2) = -mu_sun*(1/r32_sun - 3 * dy_sun^2/r52_sun); 

         A_sun(6,3) = -mu_sun*(1/r32_sun - 3 * dz_sun^2/r52_sun); 

                  

         % Sun's x and y terms 

         A_sun(4,2) = 3*mu_sun*dx_sun*dy_sun/r52_sun; 

         A_sun(5,1) = A_sun(4,2); 

          

         % Sun's x and z terms 

         A_sun(4,3) = 3*mu_sun*dx_sun*dz_sun/r52_sun; 

         A_sun(6,1) = A_sun(4,3); 



  

   94

          

         % Sun's y and z terms 

         A_sun(5,3) = 3*mu_sun*dy_sun*dz_sun/r52_sun; 

         A_sun(6,2) = A_sun(5,3); 

          

         % Moon's gravitational parameter, km^3/s^2 

         mu_moon = 4902.799; 

     

         % Call function 'Moon' for Moon's GEOCENTRIC 

         % position vector in km 

         [r_moon] = Moon(JD); 

    

         % Vector from Moon to the satellite 

         dx_moon = X(1) - r_moon(1); 

         dy_moon = X(2) - r_moon(2); 

         dz_moon = X(3) - r_moon(3); 

    

         % Distance from the Moon to the satellite cubed 

         r32_moon = (dx_moon^2 + dy_moon^2 + dz_moon^2)^(3/2); 

          

         % Distance from the Moon to the satellite to fifth power 

         r52_moon = r32_moon^(5/3); 
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         % Diagonal terms for the Moon 

         A_moon(4,1) = -mu_moon*(1/r32_moon - 3 * dx_moon^2/r52_moon); 

         A_moon(5,2) = -mu_moon*(1/r32_moon - 3 * dy_moon^2/r52_moon); 

         A_moon(6,3) = -mu_moon*(1/r32_moon - 3 * dz_moon^2/r52_moon); 

          

         % Sun's x and y terms 

         A_moon(4,2) = 3*mu_moon*dx_moon*dy_moon/r52_moon; 

         A_moon(5,1) = A_moon(4,2); 

          

         % Sun's x and z terms 

         A_moon(4,3) = 3*mu_moon*dx_moon*dz_moon/r52_moon; 

         A_moon(6,1) = A_moon(4,3); 

          

         % Sun's y and z terms 

         A_moon(5,3) = 3*mu_moon*dy_moon*dz_moon/r52_moon; 

         A_moon(6,2) = A_moon(5,3); 

          

         %third_body_EOV_status = 'Still going!' 

     else 

          

         A_sun(4,1) = 0.0; 

         A_sun(5,2) = 0.0; 

         A_sun(6,3) = 0.0; 
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         A_sun(4,2) = 0.0; 

         A_sun(5,1) = 0.0; 

         A_sun(4,3) = 0.0; 

         A_sun(6,1) = 0.0; 

         A_sun(5,3) = 0.0; 

         A_sun(6,2) = 0.0; 

          

         A_moon(4,1) = 0.0; 

         A_moon(5,2) = 0.0; 

         A_moon(6,3) = 0.0; 

         A_moon(4,2) = 0.0; 

         A_moon(5,1) = 0.0; 

         A_moon(4,3) = 0.0; 

         A_moon(6,1) = 0.0; 

         A_moon(5,3) = 0.0; 

         A_moon(6,2) = 0.0; 

          

     end 

          

    % Equations of variations due to J2 

    if(J2_flag == 1) 

         

         % J2 gravitational zonal coefficient from JGM-2 from Appendix D 
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         % of Vallado (1997). 

         J2 = -0.1082626925638815e-2; 

         

        A_J2(4,1) = -3/2*J2*mu_earth*RE^2*((1-5*X(3)^2)/r^2)*... 

            (1/r^5 - 5*(X(1)^2/r^7) + 10 * (X(1)^2)*(X(3)^2)/r^9) 

         

        A_J2(4,2) = -3/2*J2*mu_earth*RE^2*X(1)*((-5*X(2)/r^7)*... 

            (1-5*(X(3)^2)/r^2) + (10*X(2)*X(3)^2)/r^9); 

         

        A_J2(4,3) = -3/2*J2*mu_earth*RE^2*X(1)*((-5*X(3)/r^7)*... 

            (1-5*(X(3)^2)/r^2) + (10*X(3)/r^7)*((X(3)^2)/r^2 -1)); 

                 

        A_J2(5,1) = -3/2*J2*mu_earth*RE^2*((-5*X(1)*X(2)/r^7)*... 

            (1-5*(X(3)^2)/r^2) + (10*X(1)*X(2)*X(3)^2)/r^9); 

         

        A_J2(5,2) = - 3/2*J2*mu_earth*RE^2*((1-5*(X(3)^2)/r^2)*... 

            (1/r^5 - 5*(X(2)^2)/r^7) + 10*(X(2)^2)*(X(3)^2)/r^9); 

         

        A_J2(5,3) = -3/2*J2*mu_earth*RE^2*X(2)*((-5*X(3)/r^7)*... 

            (1-5*(X(3)^2)/r^2) + (10*X(3)/r^7)*((X(3)^2)/r^2 -1)); 

                

        A_J2(6,1) = -3/2*J2*mu_earth*RE^2*X(3)*((-5*X(1)/r^7)*... 

            (3-5*(X(3)^2)/r^2) + (10*X(1)*X(3)^2)/r^9); 
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        A_J2(6,2) = - 3/2*J2*mu_earth*RE^2*X(3)*((-5*X(2)/r^7)*... 

            (3-5*(X(3)^2)/r^2) + (10*X(2)*X(3)^2)/r^9); 

         

        A_J2(6,3) = -3/2*J2*mu_earth*RE^2*(((3-5*X(3)^2)/r^2)*... 

            (1/r^5 - 5*(X(3)^2)/r^7) + (10*(X(3)^2)/r^7)*((X(3)^2)/r^2)-1); 

    else 

        A_J2(4,1) = 0.0; 

        A_J2(4,2) = 0.0; 

        A_J2(4,3) = 0.0; 

        A_J2(5,1) = 0.0; 

        A_J2(5,2) = 0.0; 

        A_J2(5,3) = 0.0; 

        A_J2(6,1) = 0.0; 

        A_J2(6,2) = 0.0; 

        A_J2(6,3) = 0.0; 

         

    end 

     

    % Equations of variation due to atmospheric drag. 

    if(drag_flag == 1) 
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        % Earth rotation rate, rad/s. 

        earth_rotation_rate = 0.000072921158553; 

         

        % Calculate the satellite's velocity vector relative to 

        % the Earth's rotating atmosphere. 

         

        % Relative velocity, km/s. 

        v_rel(1) = X(4) + earth_rotation_rate * X(2); 

        v_rel(2) = X(5) - earth_rotation_rate * X(1); 

        v_rel(3) = X(6); 

         

        % Magnitude of relative velocity, km/s. 

        v_rel_mag - norm(v_rel); 

         

        % Determine altitude above Earth's surface, km. 

        altitude = r - RE; 

         

        % Call function 'atmosphere' to get atmospheric density and 

        % scale height. 

        [density, scale_height] = atmosphere(altitude); 

        big_H = scale_height; 

         

        % Drag constant, DC, for easy programming 
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        DC = -0.5 * drag_coefficient * sat_area / sat_mass; 

         

         

        A_drag(4,1) = DC*density *v_rel(1)*(-X(1)*v_rel_mag/(big_H * r) -... 

            earth_rotation_rate*v_rel(2)/v_rel_mag)*1000.0; 

         

        A_drag(4,2) = DC*density*(-X(2)*v_rel_mag*v_rel(1)/(big_H * r) +... 

            earth_rotation_rate/v_rel_mag*v_rel(1)^2 + ... 

            v_rel_mag * earth_rotation_rate)*1000.0; 

        A_drag(4,3) = DC*density*(-X(3)*v_rel_mag*v_rel(1)/(big_H * r))*1000.0; 

        A_drag(4,4) = DC*density*((v_rel(1)^2)/v_rel_mag + v_rel_mag)*1000.0; 

        A_drag(4,5) = DC*density*((v_rel(1)*v_rel(2))/v_rel_mag)*1000.0; 

        A_drag(4,6) = DC*density*(v_rel(1)*v_rel(3)/v_rel_mag)*1000.0; 

        A_drag(5,1) = DC*density*(-X(1)*v_rel_mag*v_rel(2)/(big_H * r) -... 

            earth_rotation_rate*(v_rel(2)^2)/v_rel_mag - ... 

            earth_rotation_rate*v_rel_mag)*1000.0; 

        A_drag(5,2) = DC*density*(-X(2)*v_rel_mag*v_rel(2)/(big_H * r) +... 

            earth_rotation_rate*v_rel(1)*v_rel(2)/v_rel_mag)*1000.0; 

        A_drag(5,3) = DC*density*(-v_rel_mag*v_rel(2)*X(3)/(big_H * r))*... 

            1000.0; 

        A_drag(5,4) = DC*density*(v_rel(1)*v_rel(2)/v_rel_mag)*1000.0; 

        A_drag(5,5) = DC*density*((v_rel(2)^2)/v_rel_mag+v_rel_mag)*1000.0; 

        A_drag(5,6) = DC*density*(v_rel(3)*v_rel(2)/v_rel_mag)*1000.0; 



  

   101

         

         

        A_drag(6,1) = DC*density*(-X(1)*v_rel_mag*v_rel(3)/(big_H * r) -... 

            earth_rotation_rate*v_rel(2)*v_rel(3)/v_rel_mag)*1000.0; 

        A_drag(6,2) = DC*density*(-X(2)*v_rel_mag*v_rel(3)/(big_H * r) +... 

            earth_rotation_rate*v_rel(1)*v_rel(3)/v_rel_mag)*1000.0; 

        A_drag(6,3) = DC*density*(-X(3)*v_rel_mag*v_rel(3)/(big_H * r))... 

            *1000.0; 

        A_drag(6,4) = DC*density*(v_rel(1)*v_rel(3)/v_rel_mag)*1000.0; 

        A_drag(6,5) = DC*density*(v_rel(2)*v_rel(3)/v_rel_mag)*1000.0; 

        A_drag(6,6) = DC*density*(v_rel(3)^2/v_rel_mag+v_rel_mag)*1000.0; 

    else 

        A_drag(4,1) = 0.0; 

        A_drag(4,2) = 0.0; 

        A_drag(4,3) = 0.0; 

        A_drag(4,4) = 0.0; 

        A_drag(4,5) = 0.0; 

        A_drag(4,6) = 0.0; 

         

        A_drag(5,1) = 0.0; 

        A_drag(5,2) = 0.0; 

        A_drag(5,3) = 0.0; 

        A_drag(5,4) = 0.0; 
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        A_drag(5,5) = 0.0; 

        A_drag(5,6) = 0.0; 

         

        A_drag(6,1) = 0.0; 

        A_drag(6,2) = 0.0; 

        A_drag(6,3) = 0.0; 

        A_drag(6,4) = 0.0; 

        A_drag(6,5) = 0.0; 

        A_drag(6,6) = 0.0; 

    end    

    % Sum the components. 

    % Diagonal terms. 

    A(4,1) = A(4,1) + A_J2(4,1) + A_drag(4,1) + A_sun(4,1) + A_moon(4,1); 

    A(5,2) = A(5,2) + A_J2(5,2) + A_drag(5,2) + A_sun(5,2) + A_moon(5,2); 

    A(6,3) = A(6,3) + A_J2(6,3) + A_drag(6,3) + A_sun(6,3) + A_moon(6,3); 

     

    % Off-diagonal terms. 

    A(4,2) = A(4,2) + A_J2(4,2) + A_drag(4,2) + A_sun(4,2) + A_moon(4,2); 

    A(5,1) = A(5,1) + A_J2(5,1) + A_drag(5,1) + A_sun(5,1) + A_moon(5,1); 

     

    A(4,3) = A(4,3) + A_J2(4,3) + A_drag(4,3) + A_sun(4,3) + A_moon(4,3); 

    A(6,1) = A(6,1) + A_J2(6,1) + A_drag(6,1) + A_sun(6,1) + A_moon(6,1); 
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    A(5,3) = A(5,3) + A_J2(5,3) + A_drag(5,3) + A_sun(5,3) + A_moon(5,3); 

    A(6,2) = A(6,2) + A_J2(6,2) + A_drag(6,2) + A_sun(6,2) + A_moon(6,2); 

    % Equations of variation that are velocity related. 

    A(4,4) = A_drag(4,4); 

    A(4,5) = A_drag(4,5); 

    A(4,6) = A_drag(4,6); 

    A(5,4) = A_drag(4,4); 

    A(5,5) = A_drag(4,5); 

    A(5,6) = A_drag(4,6); 

    A(6,4) = A_drag(4,4); 

    A(6,5) = A_drag(4,5); 

    A(6,6) = A_drag(4,6); 

     

    % Extract phi matrix in normal form from the total state 

    % column vector X. 

    phi = [X(7) X(8) X(9) X(10) X(11) X(12); 

        X(13) X(14) X(15) X(16) X(17) X(18); 

        X(19) X(20) X(21) X(22) X(23) X(24); 

        X(25) X(26) X(27) X(28) X(29) X(30); 

        X(31) X(32) X(33) X(34) X(35) X(36); 

        X(37) X(38) X(39) X(40) X(41) X(42)]; 
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% Calculate the derivative of the state transition matrix, phi dot. 

    phi_dot = A * phi; 

    % Write the total state derivative as a column vector to return. 

    dX = [dX(1); dX(2); dX(3); dX(4); dX(5); dX(6);... 

            phi_dot(1,1); phi_dot(1,2); phi_dot(1,3); phi_dot(1,4);... 

            phi_dot(1,5); phi_dot(1,6); phi_dot(2,1); phi_dot(2,2);... 

            phi_dot(2,3); phi_dot(2,4); phi_dot(2,5); phi_dot(2,6);... 

            phi_dot(3,1); phi_dot(3,2); phi_dot(3,3); phi_dot(3,4);... 

            phi_dot(3,5); phi_dot(3,6); phi_dot(4,1); phi_dot(4,2);... 

            phi_dot(4,3); phi_dot(4,4); phi_dot(4,5); phi_dot(4,6);... 

            phi_dot(5,1); phi_dot(5,2); phi_dot(5,3); phi_dot(5,4);... 

            phi_dot(5,5); phi_dot(5,6); phi_dot(6,1); phi_dot(6,2);... 

            phi_dot(6,3); phi_dot(6,4); phi_dot(6,5); phi_dot(6,6)]; 

     

    dX_size = size(dX); 

end    

% Close output data files. 

fclose(fid1); 

fclose(fid2); 

fclose(fid3); 

fclose(fid4);            

% End of on-orbit rhs function 
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Appendix C. 

 

function [zpred,H,Q_inv] = obser(r_tgt,v_tgt,r_micro,v_micro,data_type) 

% Capt Brian L. Foster 

% 20 December 2002 

 

% This MATLAB code modeled after FORTRAN code written by  

% Dr. William E. Wiesel for MECH 731 Modern Methods of  

% Orbit Determination. 

 

% This subroutine performs the observation relation processing. 

% It calculates the predicted observation, z_pred; H matrix; and 

% returns the inverse of the data (instrument or measurements)  

% covariance matrix, Q_inv. 

 

format long g 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Data type: range and range-rate 

% Relative position vector (3 x 1) (range) in IJK coordinates 

% from the microsatellite (with the tracking sensor) to the 

% target satellite.  

range_vector = r_tgt - r_micro; 
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% Magnitude of range vector in IJK coordinates, kilometers 

range = norm(range_vector); 

 

% Relative velocity in IJK coordinates, in km/s 

relative_velocity = v_tgt - v_micro;  

 

% Magnitude of range rate in IJK, in km/s 

range_rate = dot(range_vector,relative_velocity)/range; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Range only processing                                          

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if(data_type == 1) 

  

% Form z, predicted data vector. (2 x 1) 

% Each component of zpred is a scalar. 

zpred = [range]; 

 

% Form Q, the instrumental covariance matrix 

Q = zeros(1,1); 

Q(1,1) = 0.002^2;  % Instrumentation sigma squared ( 2 meters = 0.002 km) 

Q_inv = inv(Q); 



  

   107

     

 

% Form H, the observation matrix, here. 

% H matrix found on pages 75-76 of Wiesel and signs changed on  

% row 2 in accordance with text on page 80 to account for the  

% azimuth difference. 

% H is a 2 x 6 matrix based on SEZ coordinates. 

% Initialize H to zeros first then build up needed components. 

H = zeros(1,6); 

 

% Equations for range partial derivatives that change wrt position 

H(1,1) = range_vector(1)/range; 

H(1,2) = range_vector(2)/range; 

H(1,3) = range_vector(3)/range; 

 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Range and range-rate processing                                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if(data_type == 2) 

     

% Form z, predicted data vector. (2 x 1) 

% Each component of zpred is a scalar. 



  

   108

zpred = [range; range_rate]; 

 

% Form Q, the instrumental covariance matrix 

Q = zeros(2,2); 

 

Q(1,1) = 0.000004; 

Q(2,2) = 0.000004; 

 

Q_inv = inv(Q); 

     

% Form H, the observation matrix, here. 

% H matrix found on pages 75-76 of Wiesel and signs changed on  

% row 2 in accordance with text on page 80 to account for the  

% azimuth difference. 

% H is a 2 x 6 matrix based on SEZ coordinates. 

% Initialize H to zeros first then build up needed components. 

H = zeros(2,6); 

 

% Equations for range partial derivatives that change wrt position 

H(1,1) = range_vector(1)/range; 

H(1,2) = range_vector(2)/range; 

H(1,3) = range_vector(3)/range; 
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% Equations for range-rate partial derivatives that change wrt 

% position and velocity. 

H(2,1) = relative_velocity(1)/range - range_rate*range_vector(1)/range^2; 

H(2,2) = relative_velocity(2)/range - range_rate*range_vector(2)/range^2; 

H(2,3) = relative_velocity(3)/range - range_rate*range_vector(3)/range^2;     

H(2,4) = range_vector(1)/range; 

H(2,5) = range_vector(2)/range; 

H(2,6) = range_vector(3)/range; 

 

end 
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Appendix D. 

 

function [v2,warning] = gibbs(r1,r2,r3) 

 

% Test case vectors 

%r1 = [1684.709420; -6982.280710; -601.808660] 

%r2 = [1599.998580; -7028.257130; 14.877410] 

%r3 = [1502.433630; -7021.711680; 631.719850] 

 

% Capt Brian L. Foster 

% 23 December 2002 

 

% This is Algorithm 48 from Vallado (1997) page 414. 

% It returns the velocity vector associated with position 

% vector r2.   

 

% The input vectors r1, r2, and r3 are in the IJK coordinate system 

% and with units of kilometers. 

 

format long g 

 

% Earth's gravitational parameter, km^3/s^2 

mu = 398600.4415; 
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% Normal vectors 

Z12_vec = cross(r1,r2); 

Z23_vec = cross(r2,r3); 

Z31_vec = cross(r3,r1); 

 

% Vectors are coplanar if Z23_vec is perpendicular to r1. 

 

% Magnitudes of the position vectors 

r1_mag = norm(r1); 

r2_mag = norm(r2); 

r3_mag = norm(r3); 

 

% Check to see how coplanar the vectors are. 

alpha_cop = 90.0 - acos(dot(Z23_vec,r1)/... 

    (norm(Z23_vec)*r1_mag))*180.0/pi 

 

% Determine angular separations to ensure sufficient separation 

% Angular separation between r1 and r2, in degrees 

alpha12 = acos(dot(r1,r2)/(r1_mag*r2_mag))*180.0/pi 

 

% Angular separation between r2 and r3, in degrees 
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alpha23 = acos(dot(r2,r3)/(r2_mag*r3_mag))*180.0/pi 

 

if(alpha12 < 1.0 | alpha23 < 1.0) 

    warning = 'r1, r2, and r3 are too close.  Use Herrick-Gibbs.' 

    v2 = 'v2 not calculated.' 

    return 

end 

 

% Intermediate vectors 

N_vec = r1_mag * Z23_vec + r2_mag * Z31_vec + r3_mag * Z12_vec; 

D_vec = Z12_vec + Z23_vec + Z31_vec; 

S_vec = (r2_mag - r3_mag)*r1 + ... 

    (r3_mag - r1_mag)*r2 + (r1_mag - r2_mag)*r3; 

B_vec = cross(D_vec,r2); 

Lg = sqrt(mu/(norm(N_vec) * norm(D_vec))); 

 

% Velocity vector associated with r2, units in km/s 

v2 = Lg/r2_mag * B_vec + Lg * S_vec 

warning = 0; 

return 
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Appendix E. 

 

function [v2] = h_gibbs(r1,r2,r3,JD1,JD2,JD3) 

% Capt Brian L. Foster 

% 23 December 2002 

 

% Test case vectors 

r1 = [1607.879850;-7026.697450; -15.031650] 

r2 = [1599.998580; -7028.257130; 14.877410] 

r3 = [1592.705670; -7030.083050; 44.770310] 

 

% Julian Dates of test case vectors 

JD1 = 2452734.4999537 

JD2 = 2452734.5 

JD3 = 2452734.5000463 

 

% This is Algorithm 49 from Vallado (1997) page 420. 

 

format long g 

 

% Earth's gravitational parameter, km^3/s^2 

mu = 398600.4415; 
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% The position vectors r1, r2, and r3 are in the IJK 

% coordinate system with units of kilometers. 

 

 

% Remember that JD dates are in "DAYS" and must be 

% converted to seconds. 

 

del_t31 = (JD3 - JD1)*86400.0; 

del_t32 = (JD3 - JD2)*86400.0; 

del_t21 = (JD2 - JD1)*86400.0; 

 

% Data for test case debugging. 

% del_t31 = 153.04; 

% del_t32 = 76.56; 

% del_t21 = 76.48; 

 

Z23_vec = cross(r2,r3); 

Z23 = norm(Z23_vec); 

 

r1_mag = norm(r1); 

r2_mag = norm(r2); 

r3_mag = norm(r3); 
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alpha_cop = 90.0 - acos(dot(Z23_vec,r1)/(Z23*r1_mag))*180.0/pi 

 

% Determine angular separations to ensure sufficient separation 

% Angular separation between r1 and r2 

alpha12 = acos(dot(r1,r2)/(r1_mag*r2_mag))*180.0/pi 

 

% Angular separation between r2 and r3 

alpha23 = acos(dot(r2,r3)/(r2_mag*r3_mag))*180.0/pi 

 

if(alpha12 > 5.0 | alpha23 > 5.0) 

    v2 = 'v2 not calculated.'; 

    warning = 'r1, r2, and r3 are too far apart.  Use Gibbs method.'; 

    return 

end 

 

% Velocity vector associated with second position vector in km/s. 

v2 = -del_t32*(1/(del_t21*del_t31) + mu/(12*r1_mag^3))*r1 +... 

    (del_t32 - del_t21)*(1/(del_t21*del_t32) + mu/(12*r2_mag^3))*r2 +... 

    del_t21*(1/(del_t32*del_t31) + mu/(12*r3_mag^3))*r3 

warning = 0; 

return 
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